Deepak Krishnamurthy , Erik O. Johansson , Jin Wook Lee , Erik Kjeang
{"title":"Computational modeling of microfluidic fuel cells with flow-through porous electrodes","authors":"Deepak Krishnamurthy , Erik O. Johansson , Jin Wook Lee , Erik Kjeang","doi":"10.1016/j.jpowsour.2011.08.024","DOIUrl":null,"url":null,"abstract":"<div><p>In the current work, a computational model of a microfluidic fuel cell with flow-through porous electrodes is developed and validated with experimental data based on vanadium redox electrolyte as fuel and oxidant. The model is the first of its kind for this innovative fuel cell design. The coupled problem of fluid flow, mass transport and electrochemical kinetics is solved from first principles using a commercial multiphysics code. The performance characteristics of the fuel cell based on polarization curves, single pass efficiency, fuel utilization and power density are predicted and theoretical maxima are established. Fuel and oxidant flow rate and its effect on cell performance is considered and an optimal operating point with respect to both efficiency and power output is identified for a given flow rate. The results help elucidate the interplay of kinetics and mass transport effects in influencing porous electrode polarization characteristics. The performance and electrode polarization at the mass transfer limit are also detailed. The results form a basis for determining parameter variations and design modifications to improve performance and fuel utilization. The validated model is expected to become a useful design tool for development and optimization of fuel cells and electrochemical sensors incorporating microfluidic flow-through porous electrodes.</p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jpowsour.2011.08.024","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775311015242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 86
Abstract
In the current work, a computational model of a microfluidic fuel cell with flow-through porous electrodes is developed and validated with experimental data based on vanadium redox electrolyte as fuel and oxidant. The model is the first of its kind for this innovative fuel cell design. The coupled problem of fluid flow, mass transport and electrochemical kinetics is solved from first principles using a commercial multiphysics code. The performance characteristics of the fuel cell based on polarization curves, single pass efficiency, fuel utilization and power density are predicted and theoretical maxima are established. Fuel and oxidant flow rate and its effect on cell performance is considered and an optimal operating point with respect to both efficiency and power output is identified for a given flow rate. The results help elucidate the interplay of kinetics and mass transport effects in influencing porous electrode polarization characteristics. The performance and electrode polarization at the mass transfer limit are also detailed. The results form a basis for determining parameter variations and design modifications to improve performance and fuel utilization. The validated model is expected to become a useful design tool for development and optimization of fuel cells and electrochemical sensors incorporating microfluidic flow-through porous electrodes.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture