{"title":"Epidermal growth factor and insulin-like growth factor-1 preserve cell viability in the absence of protein synthesis.","authors":"A Geier, R Hemi, M Haimson, R Beery","doi":"10.1007/BF02634189","DOIUrl":null,"url":null,"abstract":"<p><p>Prolonged exposure of cells to the potent protein synthesis inhibitor cycloheximide (CHX) terminates in cell death. In the present study we investigated the effect of epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin on cell death induced by CHX in the human cancerous cell lines MDA-231 and MCF-7 (breast), KB (oral epidermoid), HEP-2 (larynx epidermoid), and SW-480 (colon), and correlated this effect to the inhibition rate of protein synthesis. Cell death was evaluated by measuring either dead cells by trypan blue dye exclusion test or by the release of lactic dehydrogenase into the culture medium. CHX was shown to induce cell death in a concentration (1 to 60 micrograms/ml) and time (24 to 72 h)-dependent manner in each of the five cell lines. EGF at physiologic concentrations (2 to 40 ng/ml) reduced cell death close to control level (without CHX) in the cell lines HEP-2, KB, MDA-231, and SW-480, but had almost no effect on cell death in the MCF-7 cells. IGF-1 at physiologic concentrations (2 to 40 ng/ml) reduced cell death nearly to control level in the MCF-7 cells, but had only a partial effect in the other four cell lines. Insulin at supraphysiologic concentration (10,000 ng/ml) mimicked the effect of IGF-1 in each of the cell lines. CHX at concentrations that induced about 60% cell death, inhibited about 90% of protein synthesis as measured by [3H]leucine incorporation. Protein synthesis remained inhibited although cell viability was preserved by EGF or IGF-1. These results indicated that the mechanism by which EGF or IGF-1 preserve cell viability does not require new protein synthesis and may be mediated via a posttranslational modification effect.</p>","PeriodicalId":77173,"journal":{"name":"In vitro cellular & developmental biology : journal of the Tissue Culture Association","volume":"29A 3 Pt 1","pages":"231-4"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02634189","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro cellular & developmental biology : journal of the Tissue Culture Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02634189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Prolonged exposure of cells to the potent protein synthesis inhibitor cycloheximide (CHX) terminates in cell death. In the present study we investigated the effect of epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin on cell death induced by CHX in the human cancerous cell lines MDA-231 and MCF-7 (breast), KB (oral epidermoid), HEP-2 (larynx epidermoid), and SW-480 (colon), and correlated this effect to the inhibition rate of protein synthesis. Cell death was evaluated by measuring either dead cells by trypan blue dye exclusion test or by the release of lactic dehydrogenase into the culture medium. CHX was shown to induce cell death in a concentration (1 to 60 micrograms/ml) and time (24 to 72 h)-dependent manner in each of the five cell lines. EGF at physiologic concentrations (2 to 40 ng/ml) reduced cell death close to control level (without CHX) in the cell lines HEP-2, KB, MDA-231, and SW-480, but had almost no effect on cell death in the MCF-7 cells. IGF-1 at physiologic concentrations (2 to 40 ng/ml) reduced cell death nearly to control level in the MCF-7 cells, but had only a partial effect in the other four cell lines. Insulin at supraphysiologic concentration (10,000 ng/ml) mimicked the effect of IGF-1 in each of the cell lines. CHX at concentrations that induced about 60% cell death, inhibited about 90% of protein synthesis as measured by [3H]leucine incorporation. Protein synthesis remained inhibited although cell viability was preserved by EGF or IGF-1. These results indicated that the mechanism by which EGF or IGF-1 preserve cell viability does not require new protein synthesis and may be mediated via a posttranslational modification effect.