Tao Deng, Xianjie Zeng, Chengyi Zhang, Yuxin Wang, Wen Zhang
{"title":"Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes","authors":"Tao Deng, Xianjie Zeng, Chengyi Zhang, Yuxin Wang, Wen Zhang","doi":"10.1016/j.cej.2022.136752","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient recovery of acids from industrial wastewater containing metal ions is crucial for resource recycling and environmental safety. Dialysis based on anion exchange membranes (AEMs) is a promising method for acid recovery but typically suffers from low selectivity. Herein, we develop highly stable AEMs based on metal-organic frameworks (MOFs) to improve the acid recovery performance. For membranes based on quaternary ammonium polysulfone (QAPSF) and quaternary ammonium poly (2,6-dimethyl-1,4-phenylene oxide) (QPPO), embedded MOFs can provide selective proton transport paths because of a precise size-sieving effect and abundant hydrogen-bonding networks, thus improving both the acid dialysis selectivity and flux. Remarkably, the QPPO membrane incorporated with 20 wt% UiO-66 exhibits a high dialysis coefficient of 16 mm/h and a separation factor of 683. The MOF-hybrid AEMs are sufficiently stable and retain their original structure and morphology after dialysis tests. In addition, molecular dynamics simulations suggest that the competitive Fe<sup>2+</sup> ions are immobile and present a high energy barrier to diffuse in UiO-66, whereas water molecules can hop between the cavities of MOFs, thereby facilitating fast proton conduction and thus improving proton selectivity. Therefore, Zr-MOFs can be incorporated as porous sieving fillers into AEMs to develop advanced hybrid membranes for acid recovery.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"445 ","pages":"Article 136752"},"PeriodicalIF":13.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894722022471","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Efficient recovery of acids from industrial wastewater containing metal ions is crucial for resource recycling and environmental safety. Dialysis based on anion exchange membranes (AEMs) is a promising method for acid recovery but typically suffers from low selectivity. Herein, we develop highly stable AEMs based on metal-organic frameworks (MOFs) to improve the acid recovery performance. For membranes based on quaternary ammonium polysulfone (QAPSF) and quaternary ammonium poly (2,6-dimethyl-1,4-phenylene oxide) (QPPO), embedded MOFs can provide selective proton transport paths because of a precise size-sieving effect and abundant hydrogen-bonding networks, thus improving both the acid dialysis selectivity and flux. Remarkably, the QPPO membrane incorporated with 20 wt% UiO-66 exhibits a high dialysis coefficient of 16 mm/h and a separation factor of 683. The MOF-hybrid AEMs are sufficiently stable and retain their original structure and morphology after dialysis tests. In addition, molecular dynamics simulations suggest that the competitive Fe2+ ions are immobile and present a high energy barrier to diffuse in UiO-66, whereas water molecules can hop between the cavities of MOFs, thereby facilitating fast proton conduction and thus improving proton selectivity. Therefore, Zr-MOFs can be incorporated as porous sieving fillers into AEMs to develop advanced hybrid membranes for acid recovery.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.