J E Bergsma, W C de Bruijn, F R Rozema, R R Bos, G Boering
{"title":"Late degradation tissue response to poly(L-lactide) bone plates and screws.","authors":"J E Bergsma, W C de Bruijn, F R Rozema, R R Bos, G Boering","doi":"10.1016/0142-9612(95)91092-d","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with fractures of the zygomatic bone were treated with high molecular weight poly(L-lactic) acid (PLLA) bone plates and screws. Three years after implantation four patients returned to our department with a swelling at the site of implantation. At the recall of the remaining patients we found an identical type of swelling after the same implantation period. To investigate the nature of the tissue reaction, eight patients were reoperated for the removal of the swelling. The implantation period of the PLLA material varied from 3.3 to 5.7 years. Microscopic evaluation and molecular weight measurements were performed. The excised material showed remnants of degraded PLLA material surrounded by a dense fibrous capsule. Ultrastructural investigation showed crystal-like PLLA material internalized by various cells. The results of this investigation suggest that the PLLA material slowly degrades into particles with a high crystallinity. The intra- and extracellular degradation rate of these particles is very low. After 5.7 years of implantation, these particles were still not fully resorbed.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"16 1","pages":"25-31"},"PeriodicalIF":12.8000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0142-9612(95)91092-d","citationCount":"818","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/0142-9612(95)91092-d","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 818
Abstract
Patients with fractures of the zygomatic bone were treated with high molecular weight poly(L-lactic) acid (PLLA) bone plates and screws. Three years after implantation four patients returned to our department with a swelling at the site of implantation. At the recall of the remaining patients we found an identical type of swelling after the same implantation period. To investigate the nature of the tissue reaction, eight patients were reoperated for the removal of the swelling. The implantation period of the PLLA material varied from 3.3 to 5.7 years. Microscopic evaluation and molecular weight measurements were performed. The excised material showed remnants of degraded PLLA material surrounded by a dense fibrous capsule. Ultrastructural investigation showed crystal-like PLLA material internalized by various cells. The results of this investigation suggest that the PLLA material slowly degrades into particles with a high crystallinity. The intra- and extracellular degradation rate of these particles is very low. After 5.7 years of implantation, these particles were still not fully resorbed.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.