Tire pyrolysis char: Processes, properties, upgrading and applications

IF 32 1区 工程技术 Q1 ENERGY & FUELS
Ningbo Gao , Fengchao Wang , Cui Quan , Laura Santamaria , Gartzen Lopez , Paul T. Williams
{"title":"Tire pyrolysis char: Processes, properties, upgrading and applications","authors":"Ningbo Gao ,&nbsp;Fengchao Wang ,&nbsp;Cui Quan ,&nbsp;Laura Santamaria ,&nbsp;Gartzen Lopez ,&nbsp;Paul T. Williams","doi":"10.1016/j.pecs.2022.101022","DOIUrl":null,"url":null,"abstract":"<div><p>Waste tires are solid wastes with large annual output and with the potential for great harm to the environment. The pyrolysis of waste tires can recycle energy and produce reusable products. Although there are many reviews in the literature in regard to the pyrolysis characteristics of waste tires, no one paper focuses on reviewing and summarizing the tire char. This paper critically appraises the achievements of earlier reports and literature and assesses the current state-of-the-art for the production and application of tire char from waste tires. Initially, the thermal decomposition behavior of different tire rubbers is discussed and compared where it is shown that the different components of waste tire rubber have different thermal degradation characteristics. The influencing factors on the yield and quality of tire char are discussed and assessed in terms of different pyrolysis reactors and technologies, tire type and composition, and a range of pyrolysis process conditions. The composition of the waste tire and pyrolysis conditions are the main factors affecting the distribution of pyrolysis products. Pyrolysis technology and reactor equipment also have an effect on the distribution of pyrolysis products. The physical and chemical structural characteristics of tire char are critically reviewed in detail, including a comparison of the fundamental differences with commercial carbon black and modified tire char (physical activation and chemical activation). Finally, high-value application fields and developmental prospects of tire char are summarized. Through extensive literature review, a novel development was that tire char could be used as a source of graphene. The economic analysis of the various tire char applications should be one of the main research directions in the future. The keynote of this review is to promote intensification of waste tire recycling and treatment so that more tire char can be obtained from waste tire pyrolysis and thereby be reused in different applications to obtain more value.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101022"},"PeriodicalIF":32.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128522000314","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 38

Abstract

Waste tires are solid wastes with large annual output and with the potential for great harm to the environment. The pyrolysis of waste tires can recycle energy and produce reusable products. Although there are many reviews in the literature in regard to the pyrolysis characteristics of waste tires, no one paper focuses on reviewing and summarizing the tire char. This paper critically appraises the achievements of earlier reports and literature and assesses the current state-of-the-art for the production and application of tire char from waste tires. Initially, the thermal decomposition behavior of different tire rubbers is discussed and compared where it is shown that the different components of waste tire rubber have different thermal degradation characteristics. The influencing factors on the yield and quality of tire char are discussed and assessed in terms of different pyrolysis reactors and technologies, tire type and composition, and a range of pyrolysis process conditions. The composition of the waste tire and pyrolysis conditions are the main factors affecting the distribution of pyrolysis products. Pyrolysis technology and reactor equipment also have an effect on the distribution of pyrolysis products. The physical and chemical structural characteristics of tire char are critically reviewed in detail, including a comparison of the fundamental differences with commercial carbon black and modified tire char (physical activation and chemical activation). Finally, high-value application fields and developmental prospects of tire char are summarized. Through extensive literature review, a novel development was that tire char could be used as a source of graphene. The economic analysis of the various tire char applications should be one of the main research directions in the future. The keynote of this review is to promote intensification of waste tire recycling and treatment so that more tire char can be obtained from waste tire pyrolysis and thereby be reused in different applications to obtain more value.

轮胎热解炭:工艺、性能、改造及应用
废旧轮胎是年产值较大的固体废物,对环境的潜在危害较大。废轮胎热解可以回收能源,生产可重复使用的产品。虽然文献中有很多关于废轮胎热解特性的综述,但没有一篇论文对轮胎炭进行综述和总结。本文批判性地评价了早期报告和文献的成就,并评估了当前从废轮胎中生产和应用轮胎炭的最新技术。首先,对不同轮胎橡胶的热分解行为进行了讨论和比较,表明不同成分的废轮胎橡胶具有不同的热降解特性。从不同的热解反应器和工艺、轮胎类型和成分、热解工艺条件等方面,对影响轮胎炭产率和质量的因素进行了探讨和评价。废轮胎的组成和热解条件是影响热解产物分布的主要因素。热解工艺和反应器设备对热解产物的分布也有影响。详细介绍了轮胎炭的物理和化学结构特征,包括与商业炭黑和改性轮胎炭(物理活化和化学活化)的根本区别的比较。最后,总结了轮胎炭的高价值应用领域和发展前景。通过大量的文献回顾,一个新的发展是轮胎炭可以作为石墨烯的来源。对各种轮胎炭应用的经济性分析应是今后的主要研究方向之一。本文综述的主旨是促进废轮胎回收和处理的集约化,以便从废轮胎热解中获得更多的轮胎炭,从而在不同的应用中重复利用,获得更多的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信