M Angrist, S Bolk, B Thiel, E G Puffenberger, R M Hofstra, C H Buys, D T Cass, A Chakravarti
{"title":"Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease.","authors":"M Angrist, S Bolk, B Thiel, E G Puffenberger, R M Hofstra, C H Buys, D T Cass, A Chakravarti","doi":"10.1093/hmg/4.5.821","DOIUrl":null,"url":null,"abstract":"<p><p>Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction with an incidence of 1 in 5000 live births. Recently, linkage of an incompletely penetrant, dominant form of HSCR was reported, followed by identification of mutations in the RET receptor tyrosine kinase. To determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have screened for mutations among 80 HSCR probands representing a wide range of phenotypes and family structures. Polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) analysis of RET's 20 exons for mutations among probands revealed eight putative mutations (10%). Sequence changes, which included missense, frameshift and complex mutations, were detected in both familial and isolated cases, among patients with both long- and short-segment HSCR and in three kindreds with other phenotypes (maternal deafness, talipes and malrotation of the gut, respectively). Two mutations (C609Y and C620R) we identified have previously been associated with multiple endocrine neoplasia type 2A (MEN2A), medullary thyroid carcinoma (MTC) and, on rare occasions, HSCR. Thus, while HSCR family members may be at risk for developing neuroendocrine tumors, it follows that identical mutations in RET may be able to participate in the pathogenesis of distinct phenotypes. Our data suggest that: (i) the overall frequency of RET mutations in HSCR patients is low and therefore, other genetic and/or environmental determinants contribute to the majority of HSCR susceptibility, and (ii) at present, there is no obvious relationship between RET genotype and HSCR phenotype.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":"4 5","pages":"821-30"},"PeriodicalIF":3.1000,"publicationDate":"1995-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/hmg/4.5.821","citationCount":"251","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/4.5.821","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 251
Abstract
Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction with an incidence of 1 in 5000 live births. Recently, linkage of an incompletely penetrant, dominant form of HSCR was reported, followed by identification of mutations in the RET receptor tyrosine kinase. To determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have screened for mutations among 80 HSCR probands representing a wide range of phenotypes and family structures. Polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) analysis of RET's 20 exons for mutations among probands revealed eight putative mutations (10%). Sequence changes, which included missense, frameshift and complex mutations, were detected in both familial and isolated cases, among patients with both long- and short-segment HSCR and in three kindreds with other phenotypes (maternal deafness, talipes and malrotation of the gut, respectively). Two mutations (C609Y and C620R) we identified have previously been associated with multiple endocrine neoplasia type 2A (MEN2A), medullary thyroid carcinoma (MTC) and, on rare occasions, HSCR. Thus, while HSCR family members may be at risk for developing neuroendocrine tumors, it follows that identical mutations in RET may be able to participate in the pathogenesis of distinct phenotypes. Our data suggest that: (i) the overall frequency of RET mutations in HSCR patients is low and therefore, other genetic and/or environmental determinants contribute to the majority of HSCR susceptibility, and (ii) at present, there is no obvious relationship between RET genotype and HSCR phenotype.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.