Excess electrons in reduced rutile and anatase TiO2

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wen-Jin Yin , Bo Wen , Chuanyao Zhou , Annabella Selloni , Li-Min Liu
{"title":"Excess electrons in reduced rutile and anatase TiO2","authors":"Wen-Jin Yin ,&nbsp;Bo Wen ,&nbsp;Chuanyao Zhou ,&nbsp;Annabella Selloni ,&nbsp;Li-Min Liu","doi":"10.1016/j.surfrep.2018.02.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>As a prototypical photocatalyst, TiO</span><sub>2</sub><span> is a material of scientific and technological interest. In photocatalysis and other applications, TiO</span><sub>2</sub> is often reduced, behaving as an <em>n</em>-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO<sub>2</sub>. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO<sub>2</sub> focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO<sub>2</sub><span><span>, for intrinsic oxygen vacancy<span> and Ti interstitial defects, and for surface </span></span>hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"73 2","pages":"Pages 58-82"},"PeriodicalIF":8.2000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2018.02.003","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572918300128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 87

Abstract

As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

还原金红石和锐钛矿TiO2中的多余电子
二氧化钛作为一种典型的光催化剂,是一种具有科学和技术价值的材料。在光催化和其他应用中,TiO2经常被还原,表现为具有独特物理化学性质的n型半导体。在这篇综述中,我们总结了近年来对还原未掺杂TiO2中多余电子的基本性质和应用的理解进展。我们讨论了金红石型和锐钛型TiO2的体和表面多余电子的特征,重点讨论了它们的定位、空间分布、能级和动力学性质。我们研究了光激发TiO2、固有氧空位和Ti间隙缺陷以及表面羟基的电子态的特定特征。讨论了金红石相和锐钛矿相中多余电子行为的异同。最后,我们考虑了多余电子对反应性的影响,重点讨论了多余电子与吸附剂之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信