Fang Zhang , Qiang Wu , Lei-Tao Sha , Yang Li , Xu-Xin Li , Ze-Yang Wang , Xuan Fu , Qing-Gang Huang , Bin Liu , Ze-Yi Yan
{"title":"Selective extraction of thorium to directly form self-assembly solid from HNO3 solution","authors":"Fang Zhang , Qiang Wu , Lei-Tao Sha , Yang Li , Xu-Xin Li , Ze-Yang Wang , Xuan Fu , Qing-Gang Huang , Bin Liu , Ze-Yi Yan","doi":"10.1016/j.jiec.2023.03.044","DOIUrl":null,"url":null,"abstract":"<div><p>Based on ions exchange between [DMDSA]<sup>+</sup>[Cl]<sup>-</sup> (Dimethyl distearyl ammonium chloride) and <em>N</em>,<em>N</em>-dialkyl-succinamide acid (SCA), three novel bifunctional [DMDSA]<sup>+</sup>[SCA]<sup>-</sup> ionic liquids (ILs) were firstly synthesized for extraction of thorium (IV) by self-assembly strategy. The simultaneous extraction and solidification of Th(IV) were unexpectedly realized in one-step operation using the present ILs in HNO<sub>3</sub> solution, and more than 99% thorium (IV) was enriched and immediately aggregated into self-assembly solid at the biphasic interface. The self-assembly solid was further identified by FT-IR, SEM with element mapping EDS and XPS analysis, and revealing that the self-assembly extraction (SAE) was triggered by the amphiphilic [DMDSA]<sup>+</sup> cations. A three-step extraction mechanism dominated by [SCA·Th(NO<sub>3</sub>)<sub>4</sub>]<sup>-</sup><span> was proposed based on the slope analysis method and HRMS analysis. The self-assembly extraction of Th(IV) exhibited the extremely excellent selectivity in the presence of U(VI) and typical lanthanide elements including La(III), Eu(III) and Lu(III), and the separation factors reached 2516 for Th/U, 1885 for Th/La, 1512 for Th/Eu and 558 for Th/Lu, respectively. The proposed SAE strategy was proved to be an efficient method for one-step separation and solidification of thorium ions from U(VI) and/or lanthanides.</span></p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"123 ","pages":"Pages 278-286"},"PeriodicalIF":5.9000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X2300182X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Based on ions exchange between [DMDSA]+[Cl]- (Dimethyl distearyl ammonium chloride) and N,N-dialkyl-succinamide acid (SCA), three novel bifunctional [DMDSA]+[SCA]- ionic liquids (ILs) were firstly synthesized for extraction of thorium (IV) by self-assembly strategy. The simultaneous extraction and solidification of Th(IV) were unexpectedly realized in one-step operation using the present ILs in HNO3 solution, and more than 99% thorium (IV) was enriched and immediately aggregated into self-assembly solid at the biphasic interface. The self-assembly solid was further identified by FT-IR, SEM with element mapping EDS and XPS analysis, and revealing that the self-assembly extraction (SAE) was triggered by the amphiphilic [DMDSA]+ cations. A three-step extraction mechanism dominated by [SCA·Th(NO3)4]- was proposed based on the slope analysis method and HRMS analysis. The self-assembly extraction of Th(IV) exhibited the extremely excellent selectivity in the presence of U(VI) and typical lanthanide elements including La(III), Eu(III) and Lu(III), and the separation factors reached 2516 for Th/U, 1885 for Th/La, 1512 for Th/Eu and 558 for Th/Lu, respectively. The proposed SAE strategy was proved to be an efficient method for one-step separation and solidification of thorium ions from U(VI) and/or lanthanides.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.