Xiangyu Kong , Zhengtao Wang , Chao Liu , Delong Zhang , Hongchao Gao
{"title":"Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants","authors":"Xiangyu Kong , Zhengtao Wang , Chao Liu , Delong Zhang , Hongchao Gao","doi":"10.1016/j.apenergy.2022.120609","DOIUrl":null,"url":null,"abstract":"<div><p>There is a consensus regarding the need to realize the transformation of renewable energy by enhancing demand-side regulating ability. This paper proposes a peak shaving potential assessment model based on the price elasticity mechanism and consumer psychology, focusing on the adjustable user load in virtual power plants. The values of deterministic parameters and the distribution of the uncertain parameter of the model are obtained through the long short-term memory network (LSTM) and mixture density network (MDN). Then, the refined distribution of peak shaving potential considering external conditions, incentive inputs, and spatial and temporal scales is obtained. Based on the evaluation results, a peak shaving decision-making model for virtual power plants is constructed using a scenario scheme. Differentiated schemes for traditional, risk-averse, and risk-seeking virtual power plant decision-makers are considered. Case studies using the data of a virtual power plant pilot area show that the proposed model can better characterize the features of virtual power plant users, and a refined control strategy with better economic benefits can be obtained.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"334 ","pages":"Article 120609"},"PeriodicalIF":10.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261922018669","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5
Abstract
There is a consensus regarding the need to realize the transformation of renewable energy by enhancing demand-side regulating ability. This paper proposes a peak shaving potential assessment model based on the price elasticity mechanism and consumer psychology, focusing on the adjustable user load in virtual power plants. The values of deterministic parameters and the distribution of the uncertain parameter of the model are obtained through the long short-term memory network (LSTM) and mixture density network (MDN). Then, the refined distribution of peak shaving potential considering external conditions, incentive inputs, and spatial and temporal scales is obtained. Based on the evaluation results, a peak shaving decision-making model for virtual power plants is constructed using a scenario scheme. Differentiated schemes for traditional, risk-averse, and risk-seeking virtual power plant decision-makers are considered. Case studies using the data of a virtual power plant pilot area show that the proposed model can better characterize the features of virtual power plant users, and a refined control strategy with better economic benefits can be obtained.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.