Timo Schaffhauser , Daniel Garijo , Maximiliano Osorio , Daniel Bittner , Suzanne Pierce , Hernán Vargas , Markus Disse , Yolanda Gil
{"title":"A framework for the broad dissemination of hydrological models for non-expert users","authors":"Timo Schaffhauser , Daniel Garijo , Maximiliano Osorio , Daniel Bittner , Suzanne Pierce , Hernán Vargas , Markus Disse , Yolanda Gil","doi":"10.1016/j.envsoft.2023.105695","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrological models are essential in water resources management<span><span>, but the expertise required to operate them often exceeds that of potential stakeholders. We present an approach that facilitates the dissemination of hydrological models, and its implementation in the Model INTegration (MINT) framework. Our approach follows principles from software engineering to create software components that reveal only selected functionality of models which is of interest to users while abstracting from implementation complexity, and to generate metadata for the model components. This methodology makes the models more findable, accessible, interoperable, and reusable in support of FAIR principles. We showcase our methodology and its implementation in MINT using two case studies. We illustrate how the models SWAT and MODFLOW are turned into software components by hydrology experts, and how users without hydrology expertise can find, adapt, and execute them. The two models differ in terms of represented processes and in model design and structure. Our approach also benefits expert modelers, by simplifying model sharing and the execution of model ensembles. MINT is a general modeling framework that uses </span>artificial intelligence techniques to assist users, and is released as open-source software.</span></p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"164 ","pages":"Article 105695"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815223000816","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrological models are essential in water resources management, but the expertise required to operate them often exceeds that of potential stakeholders. We present an approach that facilitates the dissemination of hydrological models, and its implementation in the Model INTegration (MINT) framework. Our approach follows principles from software engineering to create software components that reveal only selected functionality of models which is of interest to users while abstracting from implementation complexity, and to generate metadata for the model components. This methodology makes the models more findable, accessible, interoperable, and reusable in support of FAIR principles. We showcase our methodology and its implementation in MINT using two case studies. We illustrate how the models SWAT and MODFLOW are turned into software components by hydrology experts, and how users without hydrology expertise can find, adapt, and execute them. The two models differ in terms of represented processes and in model design and structure. Our approach also benefits expert modelers, by simplifying model sharing and the execution of model ensembles. MINT is a general modeling framework that uses artificial intelligence techniques to assist users, and is released as open-source software.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.