Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry
{"title":"Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry","authors":"Saeid Mohammadi, Amir Babaei","doi":"10.1016/j.ijbiomac.2022.01.086","DOIUrl":null,"url":null,"abstract":"<div><p>The graphene oxide (GO) nanoplates and polyethylene glycol-decorated GO (GO-PEG nano-hybrid) were synthesized and characterized by FTIR, Raman, XRD, AFM, FE-SEM-EDAX and MTT assay. Obtained results confirmed the graphite oxidation and also assembly of PEG upon GO plates. The MTT assay indicated that GO-PEG nanohybrid enhanced biocompatibility to cells compared to the GO. The GO-PEG nanohybrid was introduced to the polyvinyl alcohol/chitosan carbohydrate (PVA/CS) blends. The bio-nanocomposite were prepared by simple casting method. The GO-PEG nanohybrids demonstrated a significant role in improving thermal, mechanical and antibacterial properties. Accordingly, bio-nanocomposites containing modified GO (PVA/CS/GO-PEG) exhibited higher glass transition temperature (Tg), Young's modulus, tensile strength, elongation at break and antibacterial properties than nanocomposites containing pure GO (PVA/CS/GO). The biodegradation outcomes indicated that the highest weight loss and degradability is related to the bio-nanocomposite containing modified GO (PVA/CS/GO-PEG), which was also confirmed by FE-SEM micrographs. Therefore, PVA/CS/GO-PEG bio-nanocomposites can be a suitable candidate for biomedical applications (tissue engineering, wound dressing) and food-drug packaging industry.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813022001003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 20
Abstract
The graphene oxide (GO) nanoplates and polyethylene glycol-decorated GO (GO-PEG nano-hybrid) were synthesized and characterized by FTIR, Raman, XRD, AFM, FE-SEM-EDAX and MTT assay. Obtained results confirmed the graphite oxidation and also assembly of PEG upon GO plates. The MTT assay indicated that GO-PEG nanohybrid enhanced biocompatibility to cells compared to the GO. The GO-PEG nanohybrid was introduced to the polyvinyl alcohol/chitosan carbohydrate (PVA/CS) blends. The bio-nanocomposite were prepared by simple casting method. The GO-PEG nanohybrids demonstrated a significant role in improving thermal, mechanical and antibacterial properties. Accordingly, bio-nanocomposites containing modified GO (PVA/CS/GO-PEG) exhibited higher glass transition temperature (Tg), Young's modulus, tensile strength, elongation at break and antibacterial properties than nanocomposites containing pure GO (PVA/CS/GO). The biodegradation outcomes indicated that the highest weight loss and degradability is related to the bio-nanocomposite containing modified GO (PVA/CS/GO-PEG), which was also confirmed by FE-SEM micrographs. Therefore, PVA/CS/GO-PEG bio-nanocomposites can be a suitable candidate for biomedical applications (tissue engineering, wound dressing) and food-drug packaging industry.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.