Lucie Grisé-Miron, Jean Noreau, Pierre Melançon, Léa Brakier-Gingras
{"title":"Comparison of the misreading induced by streptomycin and neomycin","authors":"Lucie Grisé-Miron, Jean Noreau, Pierre Melançon, Léa Brakier-Gingras","doi":"10.1016/0005-2787(81)90032-0","DOIUrl":null,"url":null,"abstract":"<div><p>In a poly(U)-programmed translation system, neomycin stimulates the misincorporation of tyrosine and of serine which, according to Thompson and Stone (Thompson, R.C. and Stone, P.J. (1977) Proc. Natl. Acad. Sci. USA. 74, 198–202), are normally rejected at an initial discrimination step during the binding of charged tRNAs to the ribosome. In contrast, streptomycin favors the misincorporation of isoleucine which is normally rejected at a subsequent GTP-dependent discrimination step, the so-called proofreading step. The labeling of the ribosome with <span><math><mtext>N-</mtext><mtext>ethylmaleimide</mtext></math></span> mimics the effect of streptomycin in that it stimulates the misincorporation of isoleucine but not of tyrosine or serine. This effect is correlated with the labeling of protein S18 but not with that of protein S1. These observations indicate that the sulfhydryl group of protein S18 is located within a ribosomal domain involved in the proofreading control of tRNA selection. Taking into account our previous results that streptomycin and neomycin perturb ribosomal areas around the sulfhydryl groups of proteins S18 and S1, respectively, we suggest that these antibiotics induce misreading by different mechanisms which are linked to such perturbations.</p></div>","PeriodicalId":100164,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis","volume":"656 1","pages":"Pages 103-110"},"PeriodicalIF":0.0000,"publicationDate":"1981-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2787(81)90032-0","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0005278781900320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
In a poly(U)-programmed translation system, neomycin stimulates the misincorporation of tyrosine and of serine which, according to Thompson and Stone (Thompson, R.C. and Stone, P.J. (1977) Proc. Natl. Acad. Sci. USA. 74, 198–202), are normally rejected at an initial discrimination step during the binding of charged tRNAs to the ribosome. In contrast, streptomycin favors the misincorporation of isoleucine which is normally rejected at a subsequent GTP-dependent discrimination step, the so-called proofreading step. The labeling of the ribosome with mimics the effect of streptomycin in that it stimulates the misincorporation of isoleucine but not of tyrosine or serine. This effect is correlated with the labeling of protein S18 but not with that of protein S1. These observations indicate that the sulfhydryl group of protein S18 is located within a ribosomal domain involved in the proofreading control of tRNA selection. Taking into account our previous results that streptomycin and neomycin perturb ribosomal areas around the sulfhydryl groups of proteins S18 and S1, respectively, we suggest that these antibiotics induce misreading by different mechanisms which are linked to such perturbations.