Atom-by-Atom and Sheet-by-Sheet Chemical Mechanical Polishing of Diamond Assisted by OH Radicals: A Tight-Binding Quantum Chemical Molecular Dynamics Simulation Study
IF 8.3 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Atom-by-Atom and Sheet-by-Sheet Chemical Mechanical Polishing of Diamond Assisted by OH Radicals: A Tight-Binding Quantum Chemical Molecular Dynamics Simulation Study","authors":"Kentaro Kawaguchi, Yang Wang, Jingxiang Xu, Yusuke Ootani, Yuji Higuchi, Nobuki Ozawa, Momoji Kubo*","doi":"10.1021/acsami.1c09468","DOIUrl":null,"url":null,"abstract":"<p >Ultraflat and damage-free single-crystal diamond is a promising material for use in electronic devices such as field-effect transistors. Diamond surfaces are conventionally prepared by the chemical mechanical polishing (CMP) method, although the CMP efficiency remains a critical issue owing to the extremely high hardness of diamond. Recently, OH radicals have been demonstrated to be potentially useful for improving the CMP efficiency for diamond; however, the underlying mechanisms are still elusive. In this work, we applied our previously developed CMP-specialized tight-binding quantum chemical molecular dynamics simulator to comprehensively elucidate the CMP mechanisms of diamond assisted by OH radicals. Our simulation results indicate that the diamond surface is oxidized by reactions with OH radicals and then a concomitant surface reconstruction takes place due to the distorted and unstable nature of the oxidized diamond surface structure. Furthermore, we interestingly reveal that the reconstruction of the diamond surface ultimately leads to two distinct removal mechanisms: (i) gradual atom-by-atom removal through the desorption of gaseous molecules (e.g., CO<sub>2</sub> and H<sub>2</sub>CO<sub>3</sub>) and (ii) drastic sheet-by-sheet removal through the exfoliation of graphitic ring structures. Hence, we propose that promoting the oxidation-induced graphitization of the diamond surface may provide a route to further improving the CMP efficiency.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 34","pages":"41231–41237"},"PeriodicalIF":8.3000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c09468","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
Ultraflat and damage-free single-crystal diamond is a promising material for use in electronic devices such as field-effect transistors. Diamond surfaces are conventionally prepared by the chemical mechanical polishing (CMP) method, although the CMP efficiency remains a critical issue owing to the extremely high hardness of diamond. Recently, OH radicals have been demonstrated to be potentially useful for improving the CMP efficiency for diamond; however, the underlying mechanisms are still elusive. In this work, we applied our previously developed CMP-specialized tight-binding quantum chemical molecular dynamics simulator to comprehensively elucidate the CMP mechanisms of diamond assisted by OH radicals. Our simulation results indicate that the diamond surface is oxidized by reactions with OH radicals and then a concomitant surface reconstruction takes place due to the distorted and unstable nature of the oxidized diamond surface structure. Furthermore, we interestingly reveal that the reconstruction of the diamond surface ultimately leads to two distinct removal mechanisms: (i) gradual atom-by-atom removal through the desorption of gaseous molecules (e.g., CO2 and H2CO3) and (ii) drastic sheet-by-sheet removal through the exfoliation of graphitic ring structures. Hence, we propose that promoting the oxidation-induced graphitization of the diamond surface may provide a route to further improving the CMP efficiency.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.