{"title":"Engineering functional mesoporous materials from plant polyphenol based coordination polymers","authors":"Youyou Feng, Ping Li, Jing Wei","doi":"10.1016/j.ccr.2022.214649","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of metal–organic hybrids (<em>e.g.</em>, metal–organic frameworks) into functional nanoporous materials has attracted intensive attention because nanoporous materials show tailorable compositions and nanoarchitectures, as well as broad potential applications in energy, environment, sensor and biomedicine. Plant polyphenols, as ubiquitous biomass, reveal low cost, nontoxicity, strong metal chelate ability and good adhesive property towards various substrates. Plant polyphenols and their coordination polymers have recently been regarded as a powerful tool for engineering functional nanomaterials. Herein, the recent progress of plant polyphenol-based coordination polymers and their derived functional mesoporous materials have been comprehensively reviewed. Firstly, based on the strong interactions between polyphenols and various assembly units (<em>e.g.</em>, metal ions, soft-template) or substrates (<em>e.g.</em>, polystyrene sphere), metal-polyphenol coordination polymers (MPCPs) with capsule structure, crystalline framework, colloidal spheres or mesoporous network can be prepared. Secondly, polyphenols are regarded as an excellent sustainable carbon source. When metal-polyphenol coordination polymers are used as a carbon precursor, mesoporous carbon materials including pure carbon, heteroatom doping, or metal nanoparticle loading are prepared. Thirdly, due to the tunable compositions of MPCPs, mesoporous metal oxide spheres with tunable metal species, solid or hollow structure, complex compositions (<em>e.g.</em>, multi-metals or high-entropy metal oxides) are prepared. Fourthly, the applications of MPCPs derived mesoporous materials, including energy conversion and storage, environmental remediation and biomedicine, have been summarized. Compared with the most commonly used metal–organic frameworks, MPCPs are constructed from renewable plant polyphenols. Most importantly, polyphenols are one kind molecular glue and can interact with various molecules. Various components can be incorporated into the MPCPs. MPCPs can also be deposited on various substrates. After thermal decomposition, functional nanoporous composites and films are obtained. We believe this review will bride the polyphenol chemistry with nanoporous materials and promote the creation of more functional porous materials from polyphenols.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"468 ","pages":"Article 214649"},"PeriodicalIF":20.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854522002442","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 26
Abstract
The conversion of metal–organic hybrids (e.g., metal–organic frameworks) into functional nanoporous materials has attracted intensive attention because nanoporous materials show tailorable compositions and nanoarchitectures, as well as broad potential applications in energy, environment, sensor and biomedicine. Plant polyphenols, as ubiquitous biomass, reveal low cost, nontoxicity, strong metal chelate ability and good adhesive property towards various substrates. Plant polyphenols and their coordination polymers have recently been regarded as a powerful tool for engineering functional nanomaterials. Herein, the recent progress of plant polyphenol-based coordination polymers and their derived functional mesoporous materials have been comprehensively reviewed. Firstly, based on the strong interactions between polyphenols and various assembly units (e.g., metal ions, soft-template) or substrates (e.g., polystyrene sphere), metal-polyphenol coordination polymers (MPCPs) with capsule structure, crystalline framework, colloidal spheres or mesoporous network can be prepared. Secondly, polyphenols are regarded as an excellent sustainable carbon source. When metal-polyphenol coordination polymers are used as a carbon precursor, mesoporous carbon materials including pure carbon, heteroatom doping, or metal nanoparticle loading are prepared. Thirdly, due to the tunable compositions of MPCPs, mesoporous metal oxide spheres with tunable metal species, solid or hollow structure, complex compositions (e.g., multi-metals or high-entropy metal oxides) are prepared. Fourthly, the applications of MPCPs derived mesoporous materials, including energy conversion and storage, environmental remediation and biomedicine, have been summarized. Compared with the most commonly used metal–organic frameworks, MPCPs are constructed from renewable plant polyphenols. Most importantly, polyphenols are one kind molecular glue and can interact with various molecules. Various components can be incorporated into the MPCPs. MPCPs can also be deposited on various substrates. After thermal decomposition, functional nanoporous composites and films are obtained. We believe this review will bride the polyphenol chemistry with nanoporous materials and promote the creation of more functional porous materials from polyphenols.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.