Chemical kinetics of cyclic ethers in combustion

IF 32 1区 工程技术 Q1 ENERGY & FUELS
Luc-Sy Tran , Olivier Herbinet , Hans-Heinrich Carstensen , Frédérique Battin-Leclerc
{"title":"Chemical kinetics of cyclic ethers in combustion","authors":"Luc-Sy Tran ,&nbsp;Olivier Herbinet ,&nbsp;Hans-Heinrich Carstensen ,&nbsp;Frédérique Battin-Leclerc","doi":"10.1016/j.pecs.2022.101019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Cyclic Ethers (CEs) belong to a class of compounds of importance to understand the chemistry of both the engine auto-ignition of hydrocarbon fuels and the combustion of oxygenated biofuels. This article, divided in six parts, aims at systematically analyzing how up-to-date experimental and theoretical methods were applied to unveil the gas-phase oxidation chemistry of these compounds</span><em>.</em><span><span> The first part gives a brief overview on the significance of CEs as intermediates formed during alkane low-temperature oxidation summarizing its generally accepted chemical mechanism. This part also addresses the role of CEs as potential biofuels derived from lignocellulosic biomass<span> and discusses the production methods of these molecules and their combustion performances in engine. The second part presents the different theoretical methods dedicated to calculate the electronic structure, thermochemical and kinetic data of CEs. The third part introduces the experimental methods used in studies related to CEs with a special focus on mass spectrometry and </span></span>gas chromatography<span>. The fourth part reviews the experimental and modeling studies related to CE formation during the low-temperature oxidation of linear, branched, cyclic alkanes, alkylbenzenes, olefins, and oxygenated fuels. The fifth part analyses the published work concerning the CE degradation chemistry and highlights the dominant involved reactions. To finish, the sixth part concludes and proposes future research directions.</span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"92 ","pages":"Article 101019"},"PeriodicalIF":32.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128522000284","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 12

Abstract

Cyclic Ethers (CEs) belong to a class of compounds of importance to understand the chemistry of both the engine auto-ignition of hydrocarbon fuels and the combustion of oxygenated biofuels. This article, divided in six parts, aims at systematically analyzing how up-to-date experimental and theoretical methods were applied to unveil the gas-phase oxidation chemistry of these compounds. The first part gives a brief overview on the significance of CEs as intermediates formed during alkane low-temperature oxidation summarizing its generally accepted chemical mechanism. This part also addresses the role of CEs as potential biofuels derived from lignocellulosic biomass and discusses the production methods of these molecules and their combustion performances in engine. The second part presents the different theoretical methods dedicated to calculate the electronic structure, thermochemical and kinetic data of CEs. The third part introduces the experimental methods used in studies related to CEs with a special focus on mass spectrometry and gas chromatography. The fourth part reviews the experimental and modeling studies related to CE formation during the low-temperature oxidation of linear, branched, cyclic alkanes, alkylbenzenes, olefins, and oxygenated fuels. The fifth part analyses the published work concerning the CE degradation chemistry and highlights the dominant involved reactions. To finish, the sixth part concludes and proposes future research directions.

循环醚在燃烧中的化学动力学
环醚(CEs)是一类对了解碳氢燃料发动机自燃和含氧生物燃料燃烧的化学性质具有重要意义的化合物。本文分为六个部分,旨在系统地分析如何应用最新的实验和理论方法来揭示这些化合物的气相氧化化学。第一部分简要介绍了ce作为烷烃低温氧化过程中形成的中间体的意义,总结了其普遍接受的化学机理。本部分还讨论了从木质纤维素生物质中提取的ce作为潜在生物燃料的作用,并讨论了这些分子的生产方法及其在发动机中的燃烧性能。第二部分介绍了用于计算电子结构、热化学和动力学数据的不同理论方法。第三部分介绍了在研究中使用的实验方法,特别关注质谱和气相色谱法。第四部分综述了线性、支链、环烷烃、烷基苯、烯烃和含氧燃料在低温氧化过程中CE生成的实验和模型研究。第五部分对已发表的有关CE降解化学的研究进行了分析,重点介绍了主要涉及的反应。最后,第六部分对全文进行了总结,并提出了今后的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信