Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zeinab Savaedi, Reza Motallebi, Hamed Mirzadeh, Rouhollah Mehdinavaz Aghdam, Reza Mahmudi
{"title":"Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review","authors":"Zeinab Savaedi,&nbsp;Reza Motallebi,&nbsp;Hamed Mirzadeh,&nbsp;Rouhollah Mehdinavaz Aghdam,&nbsp;Reza Mahmudi","doi":"10.1016/j.cossms.2023.101058","DOIUrl":null,"url":null,"abstract":"<div><p>The superplastic behavior of medical magnesium alloys is reviewed in this overview article. Firstly, the basics of superplasticity and superplastic forming via grain boundary sliding (GBS) as the main deformation mechanism are discussed. Subsequently, the biomedical Mg alloys and their properties are tabulated. Afterwards, the superplasticity of biocompatible Mg-Al, Mg-Zn, Mg-Li, and Mg-RE (rare earth) alloys is critically discussed, where the influence of grain size, hot deformation temperature, and strain rate on the tensile ductility (elongation to failure) is assessed. Moreover, the thermomechanical processing routes (e.g. by dynamic recrystallization (DRX)) and severe plastic deformation (SPD) methods for grain refinement and superplasticity in each alloying system are introduced. The importance of thermal stability (thermostability) of the microstructure against the grain coarsening (grain growth) is emphasized, where the addition of alloying elements for the formation of thermally stable pinning particles and segregation of solutes at grain boundaries are found to be major controlling factors. It is revealed that superplasticity at very high temperatures can be achieved in the presence of stable rare-earth intermetallics. On the other hand, the high-strain-rate superplasticity and low-temperature superplasticity in Mg alloys with great potential for industrial applications are summarized. In this regard, it is shown that the ultrafine-grained (UFG) duplex Mg-Li alloys might show remarkable superplasticity at low temperatures. Finally, the future prospects and distinct research suggestions are summarized. Accordingly, this paper presents the opportunities that superplastic Mg alloys can offer for the biomedical industries.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 2","pages":"Article 101058"},"PeriodicalIF":12.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000037","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

The superplastic behavior of medical magnesium alloys is reviewed in this overview article. Firstly, the basics of superplasticity and superplastic forming via grain boundary sliding (GBS) as the main deformation mechanism are discussed. Subsequently, the biomedical Mg alloys and their properties are tabulated. Afterwards, the superplasticity of biocompatible Mg-Al, Mg-Zn, Mg-Li, and Mg-RE (rare earth) alloys is critically discussed, where the influence of grain size, hot deformation temperature, and strain rate on the tensile ductility (elongation to failure) is assessed. Moreover, the thermomechanical processing routes (e.g. by dynamic recrystallization (DRX)) and severe plastic deformation (SPD) methods for grain refinement and superplasticity in each alloying system are introduced. The importance of thermal stability (thermostability) of the microstructure against the grain coarsening (grain growth) is emphasized, where the addition of alloying elements for the formation of thermally stable pinning particles and segregation of solutes at grain boundaries are found to be major controlling factors. It is revealed that superplasticity at very high temperatures can be achieved in the presence of stable rare-earth intermetallics. On the other hand, the high-strain-rate superplasticity and low-temperature superplasticity in Mg alloys with great potential for industrial applications are summarized. In this regard, it is shown that the ultrafine-grained (UFG) duplex Mg-Li alloys might show remarkable superplasticity at low temperatures. Finally, the future prospects and distinct research suggestions are summarized. Accordingly, this paper presents the opportunities that superplastic Mg alloys can offer for the biomedical industries.

Abstract Image

生物医学用细晶镁合金的超塑性研究进展
本文综述了医用镁合金的超塑性行为。首先,讨论了晶界滑动超塑性和晶界滑动超塑性成形的基本原理。随后,对医用镁合金及其性能进行了制表。随后,对生物相容性Mg-Al、Mg-Zn、Mg-Li和Mg-RE(稀土)合金的超塑性进行了详细讨论,并评估了晶粒尺寸、热变形温度和应变速率对拉伸延展性(断裂伸长率)的影响。此外,还介绍了各合金体系的热机械加工路线(如动态再结晶法)和强塑性变形法(SPD),以实现晶粒细化和超塑性。强调了显微组织的热稳定性(热稳定性)对晶粒粗化(晶粒长大)的重要性,其中发现合金元素的添加对形成热稳定的钉住颗粒和溶质在晶界的偏析是主要的控制因素。结果表明,在稳定的稀土金属间化合物存在的情况下,在非常高的温度下可以实现超塑性。另一方面,总结了具有工业应用潜力的镁合金的高应变速率超塑性和低温超塑性。结果表明,超细晶(UFG)双相Mg-Li合金在低温下可能表现出显著的超塑性。最后,总结了未来的研究前景和明确的研究建议。因此,本文提出了超塑性镁合金可以为生物医学工业提供的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信