P A Hoffee, S W Hunt, J Chiang, M C Labant, M Clarke, P Jargiello
{"title":"Evidence for a trans-dominant regulator of purine nucleoside phosphorylase expression in rat hepatoma cells.","authors":"P A Hoffee, S W Hunt, J Chiang, M C Labant, M Clarke, P Jargiello","doi":"10.1007/BF01543180","DOIUrl":null,"url":null,"abstract":"<p><p>Purine nucleoside phosphorylase (PNP) levels are modulated during the growth cycle of rat hepatoma cells and increase two- to three-fold as cells go from early exponential growth phase to stationary growth phase. A mutant of these hepatoma cells has been isolated which is deficient in PNP activity. Quantitative immunoprecipitation tests indicate that the decrease in enzyme activity is due to a decrease in the number of PNP molecules. The low level of PNP enzyme produced by the mutant, however, is indistinguishable from the wild-type enzyme, suggesting that the mutant may be defective in the ability to modulate PNP levels. Fusion of the mutant cells to wild-type parental cells results in hybrids that express the mutant phenotype. Segregants that arise from the hybrids show chromosome loss and reexpression of the wild-type parental phenotype, the mutant parental phenotype, and a 2S wild-type phenotype. These indicate the following about the defect in modulation in the mutant PNP-100: (1) it is trans dominant to the wild-type; (2) its effect is negative; (3) some genomic element is required for its continued effect; and (4) it does not act by obliterating its functioning counterpart in hybrid cells.</p>","PeriodicalId":21767,"journal":{"name":"Somatic Cell Genetics","volume":"9 2","pages":"249-67"},"PeriodicalIF":0.0000,"publicationDate":"1983-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01543180","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01543180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Purine nucleoside phosphorylase (PNP) levels are modulated during the growth cycle of rat hepatoma cells and increase two- to three-fold as cells go from early exponential growth phase to stationary growth phase. A mutant of these hepatoma cells has been isolated which is deficient in PNP activity. Quantitative immunoprecipitation tests indicate that the decrease in enzyme activity is due to a decrease in the number of PNP molecules. The low level of PNP enzyme produced by the mutant, however, is indistinguishable from the wild-type enzyme, suggesting that the mutant may be defective in the ability to modulate PNP levels. Fusion of the mutant cells to wild-type parental cells results in hybrids that express the mutant phenotype. Segregants that arise from the hybrids show chromosome loss and reexpression of the wild-type parental phenotype, the mutant parental phenotype, and a 2S wild-type phenotype. These indicate the following about the defect in modulation in the mutant PNP-100: (1) it is trans dominant to the wild-type; (2) its effect is negative; (3) some genomic element is required for its continued effect; and (4) it does not act by obliterating its functioning counterpart in hybrid cells.