{"title":"The in-vitro study of novel phospholipid micelles loaded with amphotericin B on plasmodium falciparum protozoan","authors":"Khadijeh Rajablou , Hossein Attar , Seyed Kazem Sadjady , Amir Heydarinasab","doi":"10.1016/j.chemphyslip.2022.105180","DOIUrl":null,"url":null,"abstract":"<div><p><span>Malaria is one of the most challenging parasitic infectious diseases in tropical and subtropical regions all over the world. The increasing drug resistance of plasmodium falciparum<span><span> even makes the treatment procedure of malaria challenging and more problematic. Therefore, it is essential to develop new antimalarial drugs for effective treatments. In this study, the encapsulated </span>amphotericin B<span> (Constantinides et al.) in DSPC/DSPE-PEG2000 micelles was investigated as an antimalarial drug against </span></span></span><em>P. falciparum</em><span><span> 3D7 strain. The mean particle size, morphological and microstructural properties of drug-free and drug-loaded micelles prepared with amphotericin B were determined through DLS, </span>FESEM<span><span><span><span>, and TEM analysis. The synthesized </span>phospholipid micelles containing AmB drug with a mean diameter of 115 nm and a </span>polydispersity<span> index of 0.331. The TEM and SEM studies indicate the uniform and homogeneous morphology of the micelles. Drug encapsulation efficiency is 88.3%. The slow release of the micellar system shows the maximum drug release of 75.67% within 24 h. This </span></span>in vitro study was conducted on </span></span><em>P. falciparum</em> 3D7 to investigate the interactions between AmB micelles and <em>P. falciparum</em> parasites using different drug ratios. According to the findings, the IC<sub>50</sub> of free AmB is 4.834 µg/ml, while the nano-diameter AmB has a significantly lower IC<sub>50</sub> of 2.394 µg/ml. The results of this study suggest that the drug-loaded phospholipid micelles have significantly higher bioactivity and greater plasmodial properties compared to the direct application of AmB against <em>P. falciparum</em><span><span>. Moreover, according to the results of this study, the encapsulated AmB drugs are promising nanostructures for malaria treatment. Therefore the </span>nanoencapsulation AmB showed promising application for malaria treatment.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308422000081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Malaria is one of the most challenging parasitic infectious diseases in tropical and subtropical regions all over the world. The increasing drug resistance of plasmodium falciparum even makes the treatment procedure of malaria challenging and more problematic. Therefore, it is essential to develop new antimalarial drugs for effective treatments. In this study, the encapsulated amphotericin B (Constantinides et al.) in DSPC/DSPE-PEG2000 micelles was investigated as an antimalarial drug against P. falciparum 3D7 strain. The mean particle size, morphological and microstructural properties of drug-free and drug-loaded micelles prepared with amphotericin B were determined through DLS, FESEM, and TEM analysis. The synthesized phospholipid micelles containing AmB drug with a mean diameter of 115 nm and a polydispersity index of 0.331. The TEM and SEM studies indicate the uniform and homogeneous morphology of the micelles. Drug encapsulation efficiency is 88.3%. The slow release of the micellar system shows the maximum drug release of 75.67% within 24 h. This in vitro study was conducted on P. falciparum 3D7 to investigate the interactions between AmB micelles and P. falciparum parasites using different drug ratios. According to the findings, the IC50 of free AmB is 4.834 µg/ml, while the nano-diameter AmB has a significantly lower IC50 of 2.394 µg/ml. The results of this study suggest that the drug-loaded phospholipid micelles have significantly higher bioactivity and greater plasmodial properties compared to the direct application of AmB against P. falciparum. Moreover, according to the results of this study, the encapsulated AmB drugs are promising nanostructures for malaria treatment. Therefore the nanoencapsulation AmB showed promising application for malaria treatment.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.