Determination of lekethromycin in plasma and tissues of pneumonia-infected rats by ultra-high performance liquid chromatography-tandem mass spectrometry
Yuying Cao , Pan Sun , Jicheng Qiu , Jingyuan Kong , Yuxin Yang , Yu Liu , Degang Zhou , Jianzhong Wang , Xingyuan Cao
{"title":"Determination of lekethromycin in plasma and tissues of pneumonia-infected rats by ultra-high performance liquid chromatography-tandem mass spectrometry","authors":"Yuying Cao , Pan Sun , Jicheng Qiu , Jingyuan Kong , Yuxin Yang , Yu Liu , Degang Zhou , Jianzhong Wang , Xingyuan Cao","doi":"10.1016/j.jchromb.2023.123811","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Lekethromycin (LKMS), a novel semi-synthetic macrolide </span>lactone<span><span>, had the characteristics of high plasma protein binding rate, fast absorption, slow elimination, and wide distribution in rat </span>pharmacokinetics<span> studies. A reliable analytical ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based method was established by using tulathromycin and TLM (CP-60, 300) as internal standards for detection of LKMS and LKMS-HA, respectively. Samples preparation and UPLC-MS/MS conditions were optimized for complete and accurate quantification. Tissue samples were extracted with 1% formic acid<span> in acetonitrile and purified by PCX cartridges. According to FDA and EMA guidelines for </span></span></span></span>bioanalytical method, several rat characteristic tissues were selected for method validation, such as muscle, lung, spleen, liver, kidney, and intestines. The transitions </span><em>m</em>/<em>z</em> 402.900 > 158.300, <em>m</em>/<em>z</em> 577.372 > 158.309, <em>m</em>/<em>z</em> 404.200 > 158.200, and <em>m</em>/<em>z</em> 577.372 > 116.253 were monitored and quantified for LKMS, LKMS-HA, tulathromycin and TLM, respectively. According to the ratio with IS peak aera, the accuracy and precision of LKMS were 84.31%-112.50% with RSD 0.93%-9.79% and LKMS-HA were 84.62%-103.96% with RSD 0.73%-10.69%, and the method had been established and complied with FDA, EU, and Japanese guidelines. Finally, this method was applied to detect LKMS and LKMS-HA in plasma and tissues of pneumonia-infected rats that were intramuscularly administered and treated with LKMS intramuscular injection of 5 mg/kg BW and 10 mg/kg BW, and the characteristics of pharmacokinetics and tissue distribution were compared with normal rats.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1227 ","pages":"Article 123811"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023223002210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Lekethromycin (LKMS), a novel semi-synthetic macrolide lactone, had the characteristics of high plasma protein binding rate, fast absorption, slow elimination, and wide distribution in rat pharmacokinetics studies. A reliable analytical ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based method was established by using tulathromycin and TLM (CP-60, 300) as internal standards for detection of LKMS and LKMS-HA, respectively. Samples preparation and UPLC-MS/MS conditions were optimized for complete and accurate quantification. Tissue samples were extracted with 1% formic acid in acetonitrile and purified by PCX cartridges. According to FDA and EMA guidelines for bioanalytical method, several rat characteristic tissues were selected for method validation, such as muscle, lung, spleen, liver, kidney, and intestines. The transitions m/z 402.900 > 158.300, m/z 577.372 > 158.309, m/z 404.200 > 158.200, and m/z 577.372 > 116.253 were monitored and quantified for LKMS, LKMS-HA, tulathromycin and TLM, respectively. According to the ratio with IS peak aera, the accuracy and precision of LKMS were 84.31%-112.50% with RSD 0.93%-9.79% and LKMS-HA were 84.62%-103.96% with RSD 0.73%-10.69%, and the method had been established and complied with FDA, EU, and Japanese guidelines. Finally, this method was applied to detect LKMS and LKMS-HA in plasma and tissues of pneumonia-infected rats that were intramuscularly administered and treated with LKMS intramuscular injection of 5 mg/kg BW and 10 mg/kg BW, and the characteristics of pharmacokinetics and tissue distribution were compared with normal rats.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.