{"title":"COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues","authors":"Kornkamol Banjerdteerakul, Hao Peng, Kang Li","doi":"10.1016/j.memsci.2023.121780","DOIUrl":null,"url":null,"abstract":"<div><p>Nanofiltration has been identified as an effective method for removing emerging pharmaceuticals from wastewater with potential to mitigate environmental impacts and improve water quality. However, the low separation efficiency from the current nanofiltration membranes impeded their development. Here, using the vacuum-assisted self-assembly method, we prepared a thin film composite membrane by stacking covalent organic framework (COF) nanosheets on a predesigned ceramic hollow fibre. By adding methanol as the co-solvent for the assembly, a continuous and defect-free COF TpPa-SO<sub>3</sub>H layer was formed on top of the YSZ hollow fibre. The resultant COF composite membrane showed high rejection for five environmentally persistent pharmaceuticals (i.e., diclofenac, sulfamethoxazole, ketoprofen, naproxen, and ibuprofen). The hydrophilic pore surface and strong keto-amine linkages of the COF ensured high and stable permeation during operation with separation governed by electrostatic repulsion and steric exclusion. Due to our design using ceramic hollow fibres, these membranes have a small footprint and can be easily integrated into existing water treatment systems. These features make COF-based nanofiltration membranes a promising option for mitigating the environmental impacts of emerging pharmaceuticals in wastewater.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"681 ","pages":"Article 121780"},"PeriodicalIF":8.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738823004362","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Nanofiltration has been identified as an effective method for removing emerging pharmaceuticals from wastewater with potential to mitigate environmental impacts and improve water quality. However, the low separation efficiency from the current nanofiltration membranes impeded their development. Here, using the vacuum-assisted self-assembly method, we prepared a thin film composite membrane by stacking covalent organic framework (COF) nanosheets on a predesigned ceramic hollow fibre. By adding methanol as the co-solvent for the assembly, a continuous and defect-free COF TpPa-SO3H layer was formed on top of the YSZ hollow fibre. The resultant COF composite membrane showed high rejection for five environmentally persistent pharmaceuticals (i.e., diclofenac, sulfamethoxazole, ketoprofen, naproxen, and ibuprofen). The hydrophilic pore surface and strong keto-amine linkages of the COF ensured high and stable permeation during operation with separation governed by electrostatic repulsion and steric exclusion. Due to our design using ceramic hollow fibres, these membranes have a small footprint and can be easily integrated into existing water treatment systems. These features make COF-based nanofiltration membranes a promising option for mitigating the environmental impacts of emerging pharmaceuticals in wastewater.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.