Saeid Sinehbaghizadeh , Agus Saptoro , Amir H. Mohammadi
{"title":"CO2 hydrate properties and applications: A state of the art","authors":"Saeid Sinehbaghizadeh , Agus Saptoro , Amir H. Mohammadi","doi":"10.1016/j.pecs.2022.101026","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming is one of the most pressing environmental concerns which correlates strongly with anthropogenic CO<sub>2</sub> emissions so that the CO<sub>2</sub> decreasing strategies have been meaningful worldwide attention. As an option, natural gas hydrate reservoirs have steadily emerged as a potent source of energy which would simultaneously be the proper places for CO<sub>2</sub> sequestration if the method of CO<sub>2</sub>/CH<sub>4</sub> replacement could be developed. On the flip side, CO<sub>2</sub> hydrates as safe and non-flammable solid compounds without an irreversible chemical reaction would contribute to different industrial processes if their approaches could be improved. Toward developing substantial applications of CO<sub>2</sub> hydrates, laboratory experiments, process modelling, and molecular dynamics (MD) simulations can aid to understand their characteristics and mechanisms involved. Therefore, the current review has been organized in form of four distinct sections. The first part reviews the studies on sequestering CO<sub>2</sub> into the natural gas hydrate reservoirs. The next section gives an overview of process flow diagrams of CO<sub>2</sub> hydrate-based techniques in favour of CO<sub>2</sub> Capture and Sequestration & Utilization (CCS&U). The third section summarizes the merits, flaws, and different effects of hydrate promoters as well as porous media on CO<sub>2</sub> hydrate systems at macroscopic and mesoscopic levels, and also how these components can improve CO<sub>2</sub> hydrate properties, progressing toward the more feasibility of CO<sub>2</sub> hydrate industrial applications. The final sector recapitulates the MD frameworks of CO<sub>2</sub> clathrate and semiclathrate hydrates in terms of new insights and research findings to elucidate the fundamental properties of CO<sub>2</sub> hydrates at the molecular level.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101026"},"PeriodicalIF":32.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036012852200034X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 21
Abstract
Global warming is one of the most pressing environmental concerns which correlates strongly with anthropogenic CO2 emissions so that the CO2 decreasing strategies have been meaningful worldwide attention. As an option, natural gas hydrate reservoirs have steadily emerged as a potent source of energy which would simultaneously be the proper places for CO2 sequestration if the method of CO2/CH4 replacement could be developed. On the flip side, CO2 hydrates as safe and non-flammable solid compounds without an irreversible chemical reaction would contribute to different industrial processes if their approaches could be improved. Toward developing substantial applications of CO2 hydrates, laboratory experiments, process modelling, and molecular dynamics (MD) simulations can aid to understand their characteristics and mechanisms involved. Therefore, the current review has been organized in form of four distinct sections. The first part reviews the studies on sequestering CO2 into the natural gas hydrate reservoirs. The next section gives an overview of process flow diagrams of CO2 hydrate-based techniques in favour of CO2 Capture and Sequestration & Utilization (CCS&U). The third section summarizes the merits, flaws, and different effects of hydrate promoters as well as porous media on CO2 hydrate systems at macroscopic and mesoscopic levels, and also how these components can improve CO2 hydrate properties, progressing toward the more feasibility of CO2 hydrate industrial applications. The final sector recapitulates the MD frameworks of CO2 clathrate and semiclathrate hydrates in terms of new insights and research findings to elucidate the fundamental properties of CO2 hydrates at the molecular level.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.