{"title":"Using lifetime of point defects for dislocation bias in bcc Fe","authors":"Jiannan Hao , Luis Casillas-Trujillo , Haixuan Xu","doi":"10.1016/j.cossms.2022.101021","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction between dislocations and point defects<span><span> is key to deformation processes and microstructural evolution<span><span> of structural materials. In this work, we compute the lifetime of point defects to describe their interaction with dislocations. This approach can accurately account for the effects of the dislocation core and anisotropic defect dynamics to accumulatively determine the capture efficiency, sink strength, and dislocation bias at different temperatures and dislocation densities. Particularly, the absorption of point defects by straight screw and </span>edge dislocations in a model bcc iron system is studied. The maximum swelling rates based on the obtained bias factors are in close agreement with a variety of experimental measurements, including both neutron and ion-irradiation data, especially when considering the survival fraction for point defects from displacement cascades. This approach applies to many other processes and sinks, such as dislocation loops and interfaces, providing a powerful means to develop fundamental insights critical for improving radiation resistance and </span></span>mechanical properties of structural materials through controlling defect interaction and evolution.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101021"},"PeriodicalIF":12.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000419","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
The interaction between dislocations and point defects is key to deformation processes and microstructural evolution of structural materials. In this work, we compute the lifetime of point defects to describe their interaction with dislocations. This approach can accurately account for the effects of the dislocation core and anisotropic defect dynamics to accumulatively determine the capture efficiency, sink strength, and dislocation bias at different temperatures and dislocation densities. Particularly, the absorption of point defects by straight screw and edge dislocations in a model bcc iron system is studied. The maximum swelling rates based on the obtained bias factors are in close agreement with a variety of experimental measurements, including both neutron and ion-irradiation data, especially when considering the survival fraction for point defects from displacement cascades. This approach applies to many other processes and sinks, such as dislocation loops and interfaces, providing a powerful means to develop fundamental insights critical for improving radiation resistance and mechanical properties of structural materials through controlling defect interaction and evolution.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field