{"title":"A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries","authors":"Sumana Kundu , Yair Ein-Eli","doi":"10.1016/j.jpowsour.2022.232267","DOIUrl":null,"url":null,"abstract":"<div><p>The current all-solid-state battery (ASSB) technology must stride through meticulous research work to reap the much-sought benefits of high energy density, stable cycling life and economical fabrication of ASSBs for large scale applications. Among all the prevailing scientific challenges, low room temperature ionic conductivity and interfacial impedance are the major roadblocks which need to be addressed before introducing them in large scale application in the high-power devices such as electric vehicles. Herein, we briefly discuss the background and the advances of polymeric and composite solid electrolyte systems with their fundamental ion transport mechanism, followed by a discussion on understanding the chemistry of various interfaces and interphases phenomena, various types of (in)stability issues, other bottleneck and challenging parameters, and the proposed solution to these in cell design strategies. In addition, this review also critically introspects the current measurement methods for collecting and reporting data on the ionic conductivity and reliability of the acquired data. The insights into these aspects will not only enlighten the readers about the recent trends in polymeric solid electrolytes but also will assist determining the correct type of measurement methods and the right cell design strategies.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"553 ","pages":"Article 232267"},"PeriodicalIF":8.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775322012447","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current all-solid-state battery (ASSB) technology must stride through meticulous research work to reap the much-sought benefits of high energy density, stable cycling life and economical fabrication of ASSBs for large scale applications. Among all the prevailing scientific challenges, low room temperature ionic conductivity and interfacial impedance are the major roadblocks which need to be addressed before introducing them in large scale application in the high-power devices such as electric vehicles. Herein, we briefly discuss the background and the advances of polymeric and composite solid electrolyte systems with their fundamental ion transport mechanism, followed by a discussion on understanding the chemistry of various interfaces and interphases phenomena, various types of (in)stability issues, other bottleneck and challenging parameters, and the proposed solution to these in cell design strategies. In addition, this review also critically introspects the current measurement methods for collecting and reporting data on the ionic conductivity and reliability of the acquired data. The insights into these aspects will not only enlighten the readers about the recent trends in polymeric solid electrolytes but also will assist determining the correct type of measurement methods and the right cell design strategies.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems