MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yongbin Wang , Ningjun Chen , Yan Liu , Xuefeng Zhou , Ben Pu , Yue Qing , Mingzhe Zhang , Xinglin Jiang , Junfeng Huang , Qi Tang , Bin Zhou , Weiqing Yang
{"title":"MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor","authors":"Yongbin Wang ,&nbsp;Ningjun Chen ,&nbsp;Yan Liu ,&nbsp;Xuefeng Zhou ,&nbsp;Ben Pu ,&nbsp;Yue Qing ,&nbsp;Mingzhe Zhang ,&nbsp;Xinglin Jiang ,&nbsp;Junfeng Huang ,&nbsp;Qi Tang ,&nbsp;Bin Zhou ,&nbsp;Weiqing Yang","doi":"10.1016/j.cej.2022.138398","DOIUrl":null,"url":null,"abstract":"<div><p>MXene with excellent flexibility, metallic conductivity, and ultra-high capacitance, makes a promising electrode for flexible supercapacitor. But the serious restacking phenomenon between MXene layers undesirably limits the ion transport kinetics and substantially reduces ion storage sites, badly restricting the rate capability and storage capacity of supercapacitor. Here, we constructed a free-standing, flexible, structurally 3D-interconnected and hydronium ion penetrable MXene/Graphdiyne nanotube (MG) composite film by employing graphdiyne nanotubes (GDY-NTs) with inherent in-plane pores for horizontal-vertical intercalation among MXene layers. Benefiting from the above synergistic effect, this composite film presents a greatly-improved capacitance of 337.4 F g<sup>−1</sup> (337.4 C g<sup>−1</sup>) and an obviously-enhanced rate capability of 73 %-remaining at 100 mV s<sup>−1</sup>, which is much better than those of the pure Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> films (230.8 F g<sup>−1</sup>, 55 %-remaining). Based on it, we developed an asymmetric solid-state flexible supercapacitor with a high energy density of 19.7 Wh kg<sup>−1</sup> at the power density of 750 W kg<sup>−1</sup> and a capacitance retention of 88.2 % after 10 000 cycles at 8 A g<sup>−1</sup>. Evidently, this work provides a new route to solve the restacking issue of MXene for high-performance flexible supercapacitor.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"450 ","pages":"Article 138398"},"PeriodicalIF":13.3000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894722038815","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 32

Abstract

MXene with excellent flexibility, metallic conductivity, and ultra-high capacitance, makes a promising electrode for flexible supercapacitor. But the serious restacking phenomenon between MXene layers undesirably limits the ion transport kinetics and substantially reduces ion storage sites, badly restricting the rate capability and storage capacity of supercapacitor. Here, we constructed a free-standing, flexible, structurally 3D-interconnected and hydronium ion penetrable MXene/Graphdiyne nanotube (MG) composite film by employing graphdiyne nanotubes (GDY-NTs) with inherent in-plane pores for horizontal-vertical intercalation among MXene layers. Benefiting from the above synergistic effect, this composite film presents a greatly-improved capacitance of 337.4 F g−1 (337.4 C g−1) and an obviously-enhanced rate capability of 73 %-remaining at 100 mV s−1, which is much better than those of the pure Ti3C2Tx films (230.8 F g−1, 55 %-remaining). Based on it, we developed an asymmetric solid-state flexible supercapacitor with a high energy density of 19.7 Wh kg−1 at the power density of 750 W kg−1 and a capacitance retention of 88.2 % after 10 000 cycles at 8 A g−1. Evidently, this work provides a new route to solve the restacking issue of MXene for high-performance flexible supercapacitor.

Abstract Image

用于独立和柔性固态超级电容器的MXene/石墨炔纳米管复合薄膜
MXene具有优异的柔韧性、金属导电性和超高电容量,是一种很有前途的柔性超级电容器电极。但MXene层间严重的再堆积现象限制了离子传输动力学,大大减少了离子存储位点,严重制约了超级电容器的倍率性能和存储容量。在这里,我们利用石墨烯纳米管(GDY-NTs)构建了一种独立的、柔性的、结构上3d互联的、水合氢离子可穿透的MXene/石墨烯纳米管(MG)复合薄膜,石墨烯纳米管具有固有的平面内孔,可以在MXene层之间进行水平和垂直插层。得益于上述协同效应,该复合膜的电容量显著提高至337.4 F g−1 (337.4 C g−1),在100 mV s−1下的速率能力明显提高至73 %-,远远优于纯Ti3C2Tx膜(230.8 F g−1,55 %-剩余)。在此基础上,我们开发了一种非对称固态柔性超级电容器,在功率密度为750 W kg−1时,能量密度为19.7 Wh kg−1,在8 a g−1下循环10000次后电容保持率为88.2% %。显然,这项工作为解决高性能柔性超级电容器的MXene叠层问题提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信