A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2022-08-10 DOI:10.1021/acsnano.2c04971
Jiajia Wu, Mingxu Wang, Li Dong, Jian Shi, Masatoshi Ohyama, Yasuhiro Kohsaka, Chunhong Zhu* and Hideaki Morikawa*, 
{"title":"A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management","authors":"Jiajia Wu,&nbsp;Mingxu Wang,&nbsp;Li Dong,&nbsp;Jian Shi,&nbsp;Masatoshi Ohyama,&nbsp;Yasuhiro Kohsaka,&nbsp;Chunhong Zhu* and Hideaki Morikawa*,&nbsp;","doi":"10.1021/acsnano.2c04971","DOIUrl":null,"url":null,"abstract":"<p >Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core–sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 8","pages":"12801–12812"},"PeriodicalIF":16.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.2c04971","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 32

Abstract

Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core–sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.

Abstract Image

一种用于穿戴式个人热管理的三模热调节柔性纤维膜
为个人热管理设计的先进纺织品有助于以个人和节能的方式进行温度调节。与相变材料(PCMs)结合的纺织品能够通过吸收和释放潜热来弥合能源的供需。太阳能加热与焦耳加热功能的集成,提供了多种驱动资源,方便了能源的充电和储存,扩展了使用时间和应用场景。在此,我们报告了一种基于纤维膜的纺织品,通过设计用于三模热管理的分层芯-鞘纤维结构而开发。特别是,同轴静电纺丝可以有效地封装pcm,具有高热焓密度(106.9 J/g),使膜能够缓冲服装微气候中剧烈的温度变化。良好的光热转换性能使膜具有70.5°C(1太阳)的高饱和温度,受益于多个光收集器的协同效应。此外,导电涂层赋予复合膜令人惊叹的电热转换性能,达到73.8°C (4.2 V)的饱和温度。柔性纤维膜具有可逆相变、多源驱动加热和能量存储的综合性能,在全天、节能和可穿戴的个人热管理应用中具有很大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信