Yoshua Albert Darmawan, Takuma Goto, Taiki Yanagishima, Takao Fuji and Tetsuhiro Kudo*,
{"title":"Mid-Infrared Optical Force Chromatography of Microspheres Containing Siloxane Bonds","authors":"Yoshua Albert Darmawan, Takuma Goto, Taiki Yanagishima, Takao Fuji and Tetsuhiro Kudo*, ","doi":"10.1021/acs.jpclett.3c01679","DOIUrl":null,"url":null,"abstract":"<p >Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 μm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si–O–Si bonds, can be separated in accordance with their absorbance values at 9.3 μm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere’s displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 32","pages":"7306–7312"},"PeriodicalIF":4.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c01679","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 μm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si–O–Si bonds, can be separated in accordance with their absorbance values at 9.3 μm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere’s displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.