Polymer nanomedicines with enzymatically triggered activation: A comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure
IF 4.7 4区 医学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Michal Pechar PhD , Robert Pola PhD , Martin Studenovský PhD , Markéta Bláhová PhD , Eliška Grosmanová PhD , Aneta Dydowiczová PhD , Marcela Filipová PhD , Rayhanul Islam PhD , Shanghui Gao PhD , Jun Fang PhD , Tomáš Etrych PhD
{"title":"Polymer nanomedicines with enzymatically triggered activation: A comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure","authors":"Michal Pechar PhD , Robert Pola PhD , Martin Studenovský PhD , Markéta Bláhová PhD , Eliška Grosmanová PhD , Aneta Dydowiczová PhD , Marcela Filipová PhD , Rayhanul Islam PhD , Shanghui Gao PhD , Jun Fang PhD , Tomáš Etrych PhD","doi":"10.1016/j.nano.2022.102597","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer nanomedicines with anti-tumor activity should exhibit sufficient stability during systemic circulation to the target tissue; however, they should release the active drug selectively in the tumor. Thus, choice of a tumor-specific stimuli-sensitive spacer between the drug and the carrier is critical. Here, a series of polymer conjugates of anti-cancer drugs doxorubicin and pirarubicin covalently bound to copolymers based on <em>N</em>-(2-hydroxypropyl)methacrylamide via various enzymatically cleavable oligopeptide spacers were prepared and characterized. The highest rate of the drug release from the polymer carriers in presence of the lysosomal protease cathepsin B was determined for the copolymers with Val-Cit-Aba spacer. Copolymers containing pirarubicin were more cytotoxic and showed higher internalization rate than the corresponding doxorubicin counterparts. The conjugates containing GFLG and Val-Cit-Aba spacers exhibited the highest anti-tumor efficacy in vivo against murine sarcoma S-180, the highest rate of the enzymatically catalyzed drug release, and the highest cytotoxicity in vitro.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"46 ","pages":"Article 102597"},"PeriodicalIF":4.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422000831","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Polymer nanomedicines with anti-tumor activity should exhibit sufficient stability during systemic circulation to the target tissue; however, they should release the active drug selectively in the tumor. Thus, choice of a tumor-specific stimuli-sensitive spacer between the drug and the carrier is critical. Here, a series of polymer conjugates of anti-cancer drugs doxorubicin and pirarubicin covalently bound to copolymers based on N-(2-hydroxypropyl)methacrylamide via various enzymatically cleavable oligopeptide spacers were prepared and characterized. The highest rate of the drug release from the polymer carriers in presence of the lysosomal protease cathepsin B was determined for the copolymers with Val-Cit-Aba spacer. Copolymers containing pirarubicin were more cytotoxic and showed higher internalization rate than the corresponding doxorubicin counterparts. The conjugates containing GFLG and Val-Cit-Aba spacers exhibited the highest anti-tumor efficacy in vivo against murine sarcoma S-180, the highest rate of the enzymatically catalyzed drug release, and the highest cytotoxicity in vitro.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.