Lanxin Nie , Xiaogang Zeng , Li Hongbo , Suqin Wang , Zhanghui Lu , Ruqin Yu
{"title":"Entropy-driven DNA circuit with two-stage strand displacement for elegant and robust detection of miRNA let-7a","authors":"Lanxin Nie , Xiaogang Zeng , Li Hongbo , Suqin Wang , Zhanghui Lu , Ruqin Yu","doi":"10.1016/j.aca.2023.341392","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs<span><span> (miRNAs) research in cancer diagnosis is expanding, on account of miRNAs were demonstrated to be key indicator of gene expression and hopeful candidates for biomarkers. In this study, a stable miRNA-let-7a fluorescent biosensor was successfully designed based on an </span>exonuclease Ⅲ-assisted two-stage strand displacement reaction (SDR). First, an entropy-driven SDR containing a three-chain structure of the substrate is used in our designed biosensor, leading to reduce the reversibility of the target recycling process in each step. The target acts on the first stage to start the entropy-driven SDR, which generates the trigger used to stimulate the exonuclease Ⅲ-assisted SDR in the second stage. At the same time, we design a SDR one-step amplification strategy as a comparison. Expectly, this developed two-stage strand displacement system has a low detection limit of 25.0 pM as well as a broad detection range of 4 orders of magnitude, making it more sensitive than the SDR one-step sensor, whose detection limit is 0.8 nM. In addition, this sensor has high specificity across members of the miRNA family. Therefore, we can take advantage of this biosensor to promote miRNA research in cancer diagnosis sensing systems.</span></p></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1269 ","pages":"Article 341392"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000326702300613X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
MicroRNAs (miRNAs) research in cancer diagnosis is expanding, on account of miRNAs were demonstrated to be key indicator of gene expression and hopeful candidates for biomarkers. In this study, a stable miRNA-let-7a fluorescent biosensor was successfully designed based on an exonuclease Ⅲ-assisted two-stage strand displacement reaction (SDR). First, an entropy-driven SDR containing a three-chain structure of the substrate is used in our designed biosensor, leading to reduce the reversibility of the target recycling process in each step. The target acts on the first stage to start the entropy-driven SDR, which generates the trigger used to stimulate the exonuclease Ⅲ-assisted SDR in the second stage. At the same time, we design a SDR one-step amplification strategy as a comparison. Expectly, this developed two-stage strand displacement system has a low detection limit of 25.0 pM as well as a broad detection range of 4 orders of magnitude, making it more sensitive than the SDR one-step sensor, whose detection limit is 0.8 nM. In addition, this sensor has high specificity across members of the miRNA family. Therefore, we can take advantage of this biosensor to promote miRNA research in cancer diagnosis sensing systems.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.