Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Mark McConnachie , Muxina Konarova , Simon Smart
{"title":"Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production","authors":"Mark McConnachie ,&nbsp;Muxina Konarova ,&nbsp;Simon Smart","doi":"10.1016/j.ijhydene.2023.03.123","DOIUrl":null,"url":null,"abstract":"<div><p>This review highlights recent developments and future perspectives in CO<sub>x</sub>-free hydrogen production through methane pyrolysis. We give detailed discussions on thermal and catalytic methane cracking into hydrogen and carbon. Various types of solid and liquid catalysts were reviewed in terms of hydrogen selectivity, methane conversion, and deactivation. Some pilot scale technology was discussed; however, large-scale industrialisation is impeded by rapid solid catalyst deactivation, low-priced carbon (by-product) of molten catalysts, harsh conditions for reactor materials, and performance of stable molten catalysts. For catalytic methane cracking in molten catalysts (salt or metal), substantial advances in catalyst development, product separation, and reactor design are still required to commercialise methane pyrolysis for hydrogen production. To provide guidance to future works in this area, the review is specifically focused on (i) design of catalysts (ii) recent developments of molten salt-based methane cracking, (iii) reactor design and process design.</p></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319923011941","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10

Abstract

This review highlights recent developments and future perspectives in COx-free hydrogen production through methane pyrolysis. We give detailed discussions on thermal and catalytic methane cracking into hydrogen and carbon. Various types of solid and liquid catalysts were reviewed in terms of hydrogen selectivity, methane conversion, and deactivation. Some pilot scale technology was discussed; however, large-scale industrialisation is impeded by rapid solid catalyst deactivation, low-priced carbon (by-product) of molten catalysts, harsh conditions for reactor materials, and performance of stable molten catalysts. For catalytic methane cracking in molten catalysts (salt or metal), substantial advances in catalyst development, product separation, and reactor design are still required to commercialise methane pyrolysis for hydrogen production. To provide guidance to future works in this area, the review is specifically focused on (i) design of catalysts (ii) recent developments of molten salt-based methane cracking, (iii) reactor design and process design.

甲烷催化热解产氢产碳的文献综述
本文综述了甲烷热解制氢的最新进展和未来展望。对甲烷热裂解和催化裂解制氢、制碳进行了详细的讨论。从氢选择性、甲烷转化率和失活等方面综述了各类固体和液体催化剂。讨论了一些中试技术;然而,固体催化剂的快速失活、熔融催化剂的低碳(副产物)价格、反应器材料的苛刻条件以及熔融催化剂的稳定性能阻碍了大规模工业化。对于熔融催化剂(盐或金属)中的催化甲烷裂解,仍需要在催化剂开发、产品分离和反应器设计方面取得实质性进展,以实现甲烷裂解制氢的商业化。为了对该领域的未来工作提供指导,本文特别关注(i)催化剂的设计;(ii)熔盐基甲烷裂解的最新发展;(iii)反应器设计和工艺设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信