Mei Jiang , Lin Zhu , Qian Zhao , Guangyuan Chen , Zeru Wang , Jingjing Zhang , Ling Zhang , Jiehong Lei , Tao Duan
{"title":"Novel synthesis of NaY-NH4F-Bi2S3 composite for enhancing iodine capture","authors":"Mei Jiang , Lin Zhu , Qian Zhao , Guangyuan Chen , Zeru Wang , Jingjing Zhang , Ling Zhang , Jiehong Lei , Tao Duan","doi":"10.1016/j.cej.2022.136477","DOIUrl":null,"url":null,"abstract":"<div><p>Effective capture of radioactive iodine in spent fuel reprocessing is an urgent problem to be solved. In this study, we reported a novel fluoride modified bismuth sulfide supported NaY zeolite material (NaY-NH<sub>4</sub>F-Bi<sub>2</sub>S<sub>3</sub>), prepared by hydrothermal method. The zeolite with a hydrophobic skeleton was obtained by etching with NH<sub>4</sub>F solution. The adsorption mechanism generally follows preferential iodine enrichment in NaY zeolite microporous channels and is subsequently immobilized by loaded bismuth sulfide sites on NaY zeolite. Under the combination of physical and chemosorption, the sorption capacity of NaY-NH<sub>4</sub>F-Bi<sub>2</sub>S<sub>3</sub> reaches 491 mg/g, which is much higher than that of bare NaY zeolite. The excellent thermal stability and radiation stability greatly enhance its iodine capture performance under harsh conditions. The comprehensive characteristics of high cost-effectiveness, low toxicity, good radiation resistance, and good thermal stability make it have potential applications in the capture, immobilization and storage of radioactive gaseous iodine during spent fuel reprocessing.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894722019726","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 18
Abstract
Effective capture of radioactive iodine in spent fuel reprocessing is an urgent problem to be solved. In this study, we reported a novel fluoride modified bismuth sulfide supported NaY zeolite material (NaY-NH4F-Bi2S3), prepared by hydrothermal method. The zeolite with a hydrophobic skeleton was obtained by etching with NH4F solution. The adsorption mechanism generally follows preferential iodine enrichment in NaY zeolite microporous channels and is subsequently immobilized by loaded bismuth sulfide sites on NaY zeolite. Under the combination of physical and chemosorption, the sorption capacity of NaY-NH4F-Bi2S3 reaches 491 mg/g, which is much higher than that of bare NaY zeolite. The excellent thermal stability and radiation stability greatly enhance its iodine capture performance under harsh conditions. The comprehensive characteristics of high cost-effectiveness, low toxicity, good radiation resistance, and good thermal stability make it have potential applications in the capture, immobilization and storage of radioactive gaseous iodine during spent fuel reprocessing.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.