{"title":"Consequences of activation and adenosine-mediated inhibition of granulocytes during myocardial ischemia.","authors":"R Engler","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>During acute myocardial ischemia, granulocytes accumulate and obstruct the microcirculation. Granulocytes remain plugged in individual myocardial capillaries on reperfusion and are the major cause of the no-reflow phenomenon. During 3 h of ischemia, the granulocyte content of myocardium measured by 111In labeling increases from 1.0 X 10(6) to 1.5 X 10(6) cells/g, and after 5 min of reperfusion increases to 2.4 X 10(6) cells/g. The effects of granulocytes during 1 h of acute ischemia were determined by comparing agranulocytic to whole blood perfusion. With whole blood collateral flow decreased, water content increased (edema), ventricular fibrillation was common, and 27% of capillaries had no-reflow, whereas in the absence of granulocytes, collateral flow increased, there was no edema, arrhythmias were rare, and the no-reflow phenomenon was completely prevented. It is unfortunate that the inflammatory signals triggered by ischemia remain active on acute reperfusion, limit tissue salvage, and perhaps cause reperfusion injury. Several activating stimuli for granulocytes are known, but what inhibits them? Adenosine is known to inhibit superoxide radical formation by granulocytes, and 5-amino-4-imidazole carboxamide-riboside (AICA-riboside) augments adenosine release from energy-deprived cells. In dogs subjected to 1 h of ischemia, AICA-riboside pretreatment augmented adenosine release by nearly 10-fold, which was accompanied by a significant increase in collateral blood flow and decreased arrhythmias. We propose a new hypothesis: adenosine acts as a natural antiinflammatory autacoid during transient injury linking the ability to catabolize ATP (an indicator of viability) to granulocyte inhibition, thus preventing premature activation of the inflammatory response to cell death. Granulocytes are active participants in acute myocardial ischemia and means to prevent their activation, remove them from the reperfusate, or inhibit them will be necessary for optimum reperfusion salvage.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 7","pages":"2407-12"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
During acute myocardial ischemia, granulocytes accumulate and obstruct the microcirculation. Granulocytes remain plugged in individual myocardial capillaries on reperfusion and are the major cause of the no-reflow phenomenon. During 3 h of ischemia, the granulocyte content of myocardium measured by 111In labeling increases from 1.0 X 10(6) to 1.5 X 10(6) cells/g, and after 5 min of reperfusion increases to 2.4 X 10(6) cells/g. The effects of granulocytes during 1 h of acute ischemia were determined by comparing agranulocytic to whole blood perfusion. With whole blood collateral flow decreased, water content increased (edema), ventricular fibrillation was common, and 27% of capillaries had no-reflow, whereas in the absence of granulocytes, collateral flow increased, there was no edema, arrhythmias were rare, and the no-reflow phenomenon was completely prevented. It is unfortunate that the inflammatory signals triggered by ischemia remain active on acute reperfusion, limit tissue salvage, and perhaps cause reperfusion injury. Several activating stimuli for granulocytes are known, but what inhibits them? Adenosine is known to inhibit superoxide radical formation by granulocytes, and 5-amino-4-imidazole carboxamide-riboside (AICA-riboside) augments adenosine release from energy-deprived cells. In dogs subjected to 1 h of ischemia, AICA-riboside pretreatment augmented adenosine release by nearly 10-fold, which was accompanied by a significant increase in collateral blood flow and decreased arrhythmias. We propose a new hypothesis: adenosine acts as a natural antiinflammatory autacoid during transient injury linking the ability to catabolize ATP (an indicator of viability) to granulocyte inhibition, thus preventing premature activation of the inflammatory response to cell death. Granulocytes are active participants in acute myocardial ischemia and means to prevent their activation, remove them from the reperfusate, or inhibit them will be necessary for optimum reperfusion salvage.