{"title":"Metabolic activation of pesticides with proestrogenic activity.","authors":"D Kupfer, W H Bulger","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The role of metabolism in the estrogenic activity of chlorinated hydrocarbon pesticides was examined. Whether the estrogenic activity in technical grade preparations of the pesticide methoxychlor is due to methoxychlor or to contaminants was also investigated. Identified compounds in technical methoxychlor were examined by an in vitro method to determine whether they are estrogens or proestrogens. This method showed that purified methoxychlor and MDDE, an olefinic derivative of methoxychlor, are proestrogens and that monohydroxymethoxychlor and monohydroxy-MDDE are estrogens. Thus, the estrogenic activity in technical methoxychlor is due to both methoxychlor and contaminants. MDDE is an in vivo metabolite of methoxychlor, and the mono- and bishydroxy derivatives of methoxychlor and MDDE are metabolites of methoxychlor and MDDE, respectively. These metabolites exhibited in vitro estrogenic activity in the following order of potency: bis-OH-MDDE greater than bis-OH-methoxychlor greater than mono-OH-MDDE greater than mono-OH-methoxychlor. A similar order of potency was observed in vivo, demonstrating that metabolites of methoxychlor are potent estrogens. In addition to phenolic products, hepatic monooxygenases metabolize methoxychlor and MDDE to reactive intermediates that bind covalently to microsomal proteins. Further studies are needed to determine the factors controlling the two pathways of methoxychlor metabolism and determine whether covalent binding is associated with cellular and organ toxicity.</p>","PeriodicalId":12183,"journal":{"name":"Federation proceedings","volume":"46 5","pages":"1864-9"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federation proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The role of metabolism in the estrogenic activity of chlorinated hydrocarbon pesticides was examined. Whether the estrogenic activity in technical grade preparations of the pesticide methoxychlor is due to methoxychlor or to contaminants was also investigated. Identified compounds in technical methoxychlor were examined by an in vitro method to determine whether they are estrogens or proestrogens. This method showed that purified methoxychlor and MDDE, an olefinic derivative of methoxychlor, are proestrogens and that monohydroxymethoxychlor and monohydroxy-MDDE are estrogens. Thus, the estrogenic activity in technical methoxychlor is due to both methoxychlor and contaminants. MDDE is an in vivo metabolite of methoxychlor, and the mono- and bishydroxy derivatives of methoxychlor and MDDE are metabolites of methoxychlor and MDDE, respectively. These metabolites exhibited in vitro estrogenic activity in the following order of potency: bis-OH-MDDE greater than bis-OH-methoxychlor greater than mono-OH-MDDE greater than mono-OH-methoxychlor. A similar order of potency was observed in vivo, demonstrating that metabolites of methoxychlor are potent estrogens. In addition to phenolic products, hepatic monooxygenases metabolize methoxychlor and MDDE to reactive intermediates that bind covalently to microsomal proteins. Further studies are needed to determine the factors controlling the two pathways of methoxychlor metabolism and determine whether covalent binding is associated with cellular and organ toxicity.