{"title":"BST2 expression at astrocyte borders promotes microglial recruitment via the C3/C3aR signaling.","authors":"Shuang Zhang, Mengqi Yuan, Jin Zhou, Yuan Zhao, Liuyongwei Wang, Changxiong Gong, Hui Lu, Xiaofeng Cheng, Xiaoman Wang, Qian He, Linlin Hu, Bingqiao Wang, Chengkang He, Yiliang Fang, Sen Lin, Wenjie Zi, Ying He, Chenhao Zhao, Hongting Zheng, Jianqin Niu, Feng Mei, Baoliang Sun, Qi Xie, Qingwu Yang","doi":"10.1016/j.neuron.2025.09.038","DOIUrl":null,"url":null,"abstract":"<p><p>Following central nervous system injury, astrocytes form borders that were traditionally regarded as physical barriers. Emerging evidence demonstrates their capacity to regulate inflammation and repair; however, the specific characteristics of these border astrocytes and their interactions with immune cells remain insufficiently characterized. Using single-cell sequencing and spatial transcriptomics, we identified astrocytes expressing the interferon-inducible protein bone marrow stromal cell antigen 2 (BST2) enriched at injury boundaries that promote microglial recruitment via C3/C3aR signaling. Astrocyte-specific Bst2 knockout reduced astrocyte-microglia interactions and attenuated border formation, correlating with early neurological improvement after stroke. Mechanistically, BST2 enhanced C3 expression through protein kinase C-βII (PKCβII) phosphorylation. Moreover, treatment with a BST2 monoclonal antibody diminished astrocyte-microglia interactions and improved neurological function. Together, these findings highlight the pivotal role of astrocyte-microglia interactions in lesion border formation and suggest that BST2 may represent a therapeutic target to modulate these interactions and reduce early brain injury after stroke.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.09.038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Following central nervous system injury, astrocytes form borders that were traditionally regarded as physical barriers. Emerging evidence demonstrates their capacity to regulate inflammation and repair; however, the specific characteristics of these border astrocytes and their interactions with immune cells remain insufficiently characterized. Using single-cell sequencing and spatial transcriptomics, we identified astrocytes expressing the interferon-inducible protein bone marrow stromal cell antigen 2 (BST2) enriched at injury boundaries that promote microglial recruitment via C3/C3aR signaling. Astrocyte-specific Bst2 knockout reduced astrocyte-microglia interactions and attenuated border formation, correlating with early neurological improvement after stroke. Mechanistically, BST2 enhanced C3 expression through protein kinase C-βII (PKCβII) phosphorylation. Moreover, treatment with a BST2 monoclonal antibody diminished astrocyte-microglia interactions and improved neurological function. Together, these findings highlight the pivotal role of astrocyte-microglia interactions in lesion border formation and suggest that BST2 may represent a therapeutic target to modulate these interactions and reduce early brain injury after stroke.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.