Duygu Payzin-Dogru, Tim Froitzheim, Steven J Blair, Siddhartha G Jena, Hani Singer, Julia C Paoli, Ryan T Kim, Emil Kriukov, Sarah E Wilson, Renzhi Hou, Aaron M Savage, Victor Cat, Louis V Cammarata, S Y Celeste Wu, Vivien Bothe, Burcu Erdogan, Shifa Hossain, Noah Lopez, Julia Losner, Juan Velazquez Matos, Sangwon Min, Sebastian Böhm, Anthony E Striker, Kelly E Dooling, Adam H Freedman, Bobby Groves, Benjamin Tajer, Glory Kalu, Eric Wynn, Alan Y L Wong, Nadia Fröbisch, Petr Baranov, Maksim V Plikus, Jason D Buenrostro, Brian J Haas, Isaac M Chiu, Timothy B Sackton, Jessica L Whited
{"title":"Adrenergic signaling coordinates distant and local responses to amputation in axolotl.","authors":"Duygu Payzin-Dogru, Tim Froitzheim, Steven J Blair, Siddhartha G Jena, Hani Singer, Julia C Paoli, Ryan T Kim, Emil Kriukov, Sarah E Wilson, Renzhi Hou, Aaron M Savage, Victor Cat, Louis V Cammarata, S Y Celeste Wu, Vivien Bothe, Burcu Erdogan, Shifa Hossain, Noah Lopez, Julia Losner, Juan Velazquez Matos, Sangwon Min, Sebastian Böhm, Anthony E Striker, Kelly E Dooling, Adam H Freedman, Bobby Groves, Benjamin Tajer, Glory Kalu, Eric Wynn, Alan Y L Wong, Nadia Fröbisch, Petr Baranov, Maksim V Plikus, Jason D Buenrostro, Brian J Haas, Isaac M Chiu, Timothy B Sackton, Jessica L Whited","doi":"10.1016/j.cell.2025.09.025","DOIUrl":null,"url":null,"abstract":"<p><p>Many species regenerate lost body parts following amputation. Most limb regeneration research has focused on the immediate injury site. Meanwhile, body-wide injury responses remain largely unexplored but may be critical for regeneration. Here, we discovered a role for the sympathetic nervous system in stimulating a body-wide stem cell activation response to amputation that drives enhanced limb regeneration in axolotls. This response is mediated by adrenergic signaling, which coordinates distant cellular activation responses via the α<sub>2Α</sub>-adrenergic receptor, and local regeneration responses via β-adrenergic receptors. Both α<sub>2A</sub>- and β-adrenergic signaling act upstream of mTOR signaling. Notably, systemically activated axolotls regenerate limbs faster than naive animals, suggesting a potential selective advantage in environments where injury from cannibalism or predation is common. This work challenges the predominant view that cellular responses underlying regeneration are confined to the injury site and argues instead for body-wide cellular priming as a foundational step that enables localized tissue regrowth.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.09.025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many species regenerate lost body parts following amputation. Most limb regeneration research has focused on the immediate injury site. Meanwhile, body-wide injury responses remain largely unexplored but may be critical for regeneration. Here, we discovered a role for the sympathetic nervous system in stimulating a body-wide stem cell activation response to amputation that drives enhanced limb regeneration in axolotls. This response is mediated by adrenergic signaling, which coordinates distant cellular activation responses via the α2Α-adrenergic receptor, and local regeneration responses via β-adrenergic receptors. Both α2A- and β-adrenergic signaling act upstream of mTOR signaling. Notably, systemically activated axolotls regenerate limbs faster than naive animals, suggesting a potential selective advantage in environments where injury from cannibalism or predation is common. This work challenges the predominant view that cellular responses underlying regeneration are confined to the injury site and argues instead for body-wide cellular priming as a foundational step that enables localized tissue regrowth.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.