{"title":"Dual transcriptional activities of PAX3 and PAX7 spatially encode spinal cell fates through distinct gene networks.","authors":"Robin Rondon, Théaud Hezez, Julien Richard Albert, Shinichiro Hayashi, Bernadette Drayton-Libotte, Gloria Gonzalez Curto, Frédéric Auradé, Elie Balloul, Claire Dugast-Darzacq, Frédéric Relaix, Pascale Gilardi-Hebenstreit, Vanessa Ribes","doi":"10.1371/journal.pbio.3003448","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how transcription factors regulate organized cellular diversity in developing tissues remains a major challenge due to their pleiotropic functions. We addressed this by monitoring and genetically modulating the activity of PAX3 and PAX7 during the specification of neural progenitor pools in the embryonic spinal cord. Using mouse models, we show that the balance between the transcriptional activating and repressing functions of these factors is modulated along the dorsoventral axis and is instructive to the patterning of spinal progenitor pools. By combining loss-of-function experiments with functional genomics in spinal organoids, we demonstrate that PAX-mediated repression and activation rely on distinct cis-regulatory genomic modules. This enables both the coexistence of their dual activity in dorsal cell progenitors and the specific control of two major differentiation programs. PAX promote H3K27me3 deposition at silencers to repress ventral identities, while at enhancers, they act as pioneer factors, opening and activating cis-regulatory modules to specify dorsal-most identities. Finally, we show that this pioneer activity is restricted to cells exposed to BMP morphogens, ensuring spatial specificity. These findings reveal how PAX proteins, modulated by morphogen gradients, orchestrate neuronal diversity in the spinal cord, providing a robust framework for neural subtype specification.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 10","pages":"e3003448"},"PeriodicalIF":7.2000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003448","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how transcription factors regulate organized cellular diversity in developing tissues remains a major challenge due to their pleiotropic functions. We addressed this by monitoring and genetically modulating the activity of PAX3 and PAX7 during the specification of neural progenitor pools in the embryonic spinal cord. Using mouse models, we show that the balance between the transcriptional activating and repressing functions of these factors is modulated along the dorsoventral axis and is instructive to the patterning of spinal progenitor pools. By combining loss-of-function experiments with functional genomics in spinal organoids, we demonstrate that PAX-mediated repression and activation rely on distinct cis-regulatory genomic modules. This enables both the coexistence of their dual activity in dorsal cell progenitors and the specific control of two major differentiation programs. PAX promote H3K27me3 deposition at silencers to repress ventral identities, while at enhancers, they act as pioneer factors, opening and activating cis-regulatory modules to specify dorsal-most identities. Finally, we show that this pioneer activity is restricted to cells exposed to BMP morphogens, ensuring spatial specificity. These findings reveal how PAX proteins, modulated by morphogen gradients, orchestrate neuronal diversity in the spinal cord, providing a robust framework for neural subtype specification.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.