Living Materials Approach for In Situ Bio-Polymers Production Using Bacillus Paralicheniformis in Microneedles.

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Caroline Hali Alperovitz, Noa Ben David, Adi Gross, Boaz Mizrahi
{"title":"Living Materials Approach for In Situ Bio-Polymers Production Using Bacillus Paralicheniformis in Microneedles.","authors":"Caroline Hali Alperovitz, Noa Ben David, Adi Gross, Boaz Mizrahi","doi":"10.1002/adhm.202503630","DOIUrl":null,"url":null,"abstract":"<p><p>Living biomaterials, which integrate live organisms with traditional macromolecular scaffolds, function as \"live manufacturers\" capable of sensing their environment, synthesizing, and releasing biomolecules while remaining stable under physiological conditions. While systems that produce small biomolecules continue to advance, in situ production and secretion of high-molecular-weight biopolymers remain relatively underexplored. Here, a microneedle (MN) patch system is presented encapsulating Bacillus paralicheniformis (B. paralicheniformis) - a non-pathogenic, Gram-positive bacterium known for its production of γ-polyglutamic acid (γ-PGA). The MNs are designed to painlessly penetrate the stratum corneum and reach the dermis. Bacteria are uniformly distributed within the patch, and their presence has minimal impact on the microneedles' morphology and mechanical integrity. Upon application, B. paralicheniformis is released from the MNs and successfully produced γ-PGA, with molecular weights ranging from 64 to 563 kDa. Growth studies revealed that Luria-Bertani (LB) medium supports optimal bacterial proliferation, while E medium enhances γ-PGA biosynthesis. In vivo studies confirmed that B. paralicheniformis colonized mouse skin following MN administration and secreted γ-PGA without eliciting toxicity or inflammatory responses. Given the increasing therapeutic use of biopolymers and proteins for treating chronic and acute skin conditions, this living bacterial delivery system offers a promising platform for sustainable and symbiotic dermal therapies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03630"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503630","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Living biomaterials, which integrate live organisms with traditional macromolecular scaffolds, function as "live manufacturers" capable of sensing their environment, synthesizing, and releasing biomolecules while remaining stable under physiological conditions. While systems that produce small biomolecules continue to advance, in situ production and secretion of high-molecular-weight biopolymers remain relatively underexplored. Here, a microneedle (MN) patch system is presented encapsulating Bacillus paralicheniformis (B. paralicheniformis) - a non-pathogenic, Gram-positive bacterium known for its production of γ-polyglutamic acid (γ-PGA). The MNs are designed to painlessly penetrate the stratum corneum and reach the dermis. Bacteria are uniformly distributed within the patch, and their presence has minimal impact on the microneedles' morphology and mechanical integrity. Upon application, B. paralicheniformis is released from the MNs and successfully produced γ-PGA, with molecular weights ranging from 64 to 563 kDa. Growth studies revealed that Luria-Bertani (LB) medium supports optimal bacterial proliferation, while E medium enhances γ-PGA biosynthesis. In vivo studies confirmed that B. paralicheniformis colonized mouse skin following MN administration and secreted γ-PGA without eliciting toxicity or inflammatory responses. Given the increasing therapeutic use of biopolymers and proteins for treating chronic and acute skin conditions, this living bacterial delivery system offers a promising platform for sustainable and symbiotic dermal therapies.

利用微针副青衣芽孢杆菌原位生产生物聚合物的生物材料方法。
活的生物材料是将活的生物体与传统的大分子支架结合在一起,具有感知环境、合成和释放生物分子并在生理条件下保持稳定的“活的制造商”功能。虽然产生小生物分子的系统不断发展,但高分子量生物聚合物的原位生产和分泌仍然相对缺乏探索。在这里,一个微针(MN)贴片系统被封装副青衣芽孢杆菌(B.副青衣芽孢杆菌)-一种非致病性的革兰氏阳性细菌,以其生产γ-聚谷氨酸(γ-PGA)而闻名。MNs的设计目的是无痛地穿透角质层并到达真皮层。细菌均匀分布在贴片内,它们的存在对微针的形态和机械完整性的影响最小。经处理后,副衣原体B. paricheniformis从MNs中释放出来,并成功生成分子量为64 ~ 563 kDa的γ-PGA。生长研究表明,LB培养基有利于细菌增殖,而E培养基有利于γ-PGA的生物合成。体内研究证实,在给药MN后,副青衣芽孢杆菌在小鼠皮肤上定植并分泌γ-PGA,而不会引起毒性或炎症反应。鉴于生物聚合物和蛋白质越来越多地用于治疗慢性和急性皮肤疾病,这种活细菌传递系统为可持续和共生的皮肤治疗提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信