Improving 3D Object Detection in Neural Radiance Fields With Channel Attention

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Minling Zhu, Yadong Gong, Dongbing Gu, Chunwei Tian
{"title":"Improving 3D Object Detection in Neural Radiance Fields With Channel Attention","authors":"Minling Zhu,&nbsp;Yadong Gong,&nbsp;Dongbing Gu,&nbsp;Chunwei Tian","doi":"10.1049/cit2.70045","DOIUrl":null,"url":null,"abstract":"<p>In recent years, 3D object detection using neural radiance fields (NeRF) has advanced significantly, yet challenges remain in effectively utilising the density field. Current methods often treat NeRF as a geometry learning tool or rely on volume rendering, neglecting the density field's potential and feature dependencies. To address this, we propose NeRF-C3D, a novel framework incorporating a multi-scale feature fusion module with channel attention (MFCA). MFCA leverages channel attention to model feature dependencies, dynamically adjusting channel weights during fusion to enhance important features and suppress redundancy. This optimises density field representation and improves feature discriminability. Experiments on 3D-FRONT, Hypersim, and ScanNet demonstrate NeRF-C3D's superior performance validating MFCA's effectiveness in capturing feature relationships and showcasing its innovation in NeRF-based 3D detection.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 5","pages":"1446-1458"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cit2.70045","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, 3D object detection using neural radiance fields (NeRF) has advanced significantly, yet challenges remain in effectively utilising the density field. Current methods often treat NeRF as a geometry learning tool or rely on volume rendering, neglecting the density field's potential and feature dependencies. To address this, we propose NeRF-C3D, a novel framework incorporating a multi-scale feature fusion module with channel attention (MFCA). MFCA leverages channel attention to model feature dependencies, dynamically adjusting channel weights during fusion to enhance important features and suppress redundancy. This optimises density field representation and improves feature discriminability. Experiments on 3D-FRONT, Hypersim, and ScanNet demonstrate NeRF-C3D's superior performance validating MFCA's effectiveness in capturing feature relationships and showcasing its innovation in NeRF-based 3D detection.

Abstract Image

利用通道关注改进神经辐射场中的三维目标检测
近年来,利用神经辐射场(NeRF)进行三维目标检测取得了显著进展,但在有效利用密度场方面仍存在挑战。目前的方法通常将NeRF视为几何学习工具或依赖于体绘制,而忽略了密度场的潜力和特征依赖性。为了解决这个问题,我们提出了NeRF-C3D,这是一个结合多尺度特征融合模块和信道注意(MFCA)的新框架。MFCA利用信道对模型特征依赖性的关注,在融合过程中动态调整信道权重以增强重要特征并抑制冗余。这优化了密度场表示,提高了特征的可分辨性。在3D- front、Hypersim和ScanNet上的实验证明了NeRF-C3D的卓越性能,验证了MFCA在捕获特征关系方面的有效性,并展示了其在基于nerf的3D检测方面的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信