On sum-free functions

IF 1.2 3区 数学 Q1 MATHEMATICS
Alyssa Ebeling , Xiang-dong Hou , Ashley Rydell , Shujun Zhao
{"title":"On sum-free functions","authors":"Alyssa Ebeling ,&nbsp;Xiang-dong Hou ,&nbsp;Ashley Rydell ,&nbsp;Shujun Zhao","doi":"10.1016/j.ffa.2025.102744","DOIUrl":null,"url":null,"abstract":"<div><div>A function from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is said to be <em>kth order sum-free</em> if the sum of its values over each <em>k</em>-dimensional <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-affine subspace of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> is nonzero. This notion was recently introduced by C. Carlet as, among other things, a generalization of APN functions. At the center of this new topic is a conjecture about the sum-freedom of the multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> (with <span><math><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> defined to be 0). It is known that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is 2nd order (equivalently, <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>th order) sum-free if and only if <em>n</em> is odd, and it is conjectured that for <span><math><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> is never <em>k</em>th order sum-free. The conjecture has been confirmed for even <em>n</em> but remains open for odd <em>n</em>. In the present paper, we show that the conjecture holds under each of the following conditions: (1) <span><math><mi>n</mi><mo>=</mo><mn>13</mn></math></span>; (2) <span><math><mn>3</mn><mo>|</mo><mi>n</mi></math></span>; (3) <span><math><mn>5</mn><mo>|</mo><mi>n</mi></math></span>; (4) the smallest prime divisor <em>l</em> of <em>n</em> satisfies <span><math><mo>(</mo><mi>l</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>l</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>≤</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. We also determine the “right” <em>q</em>-ary generalization of the binary multiplicative inverse function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>inv</mtext></mrow></msub></math></span> in the context of sum-freedom. This <em>q</em>-ary generalization not only maintains most results for its binary version, but also exhibits some extraordinary phenomena that are not observed in the binary case.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102744"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001741","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A function from F2n to F2n is said to be kth order sum-free if the sum of its values over each k-dimensional F2-affine subspace of F2n is nonzero. This notion was recently introduced by C. Carlet as, among other things, a generalization of APN functions. At the center of this new topic is a conjecture about the sum-freedom of the multiplicative inverse function finv(x)=x1 (with 01 defined to be 0). It is known that finv is 2nd order (equivalently, (n2)th order) sum-free if and only if n is odd, and it is conjectured that for 3kn3, finv is never kth order sum-free. The conjecture has been confirmed for even n but remains open for odd n. In the present paper, we show that the conjecture holds under each of the following conditions: (1) n=13; (2) 3|n; (3) 5|n; (4) the smallest prime divisor l of n satisfies (l1)(l+2)(n+1)/2. We also determine the “right” q-ary generalization of the binary multiplicative inverse function finv in the context of sum-freedom. This q-ary generalization not only maintains most results for its binary version, but also exhibits some extraordinary phenomena that are not observed in the binary case.
关于无和函数
如果一个从F2n到F2n的函数在F2n的每一个k维的f2仿射子空间上的值的和是非零的,那么这个函数就是无k阶和的。这个概念是最近由C. Carlet引入的,作为APN函数的推广。这个新主题的中心是一个关于乘法反函数finv(x)=x−1(其中0−1定义为0)的和自由度的猜想。已知finv是二阶(即(n−2)阶)自由和当且仅当n为奇数,并且推测当3≤k≤n−3时,finv绝不是第k阶自由和。对于偶数n,该猜想已被证实,但对于奇数n,该猜想仍然是开放的。在本文中,我们证明了该猜想在下列条件下成立:(1)n=13;(2) 3 | n;(3) 5 | n;(4) n的最小素数因子l满足(l−1)(l+2)≤(n+1)/2。我们还确定了二元乘法反函数finv在自由和情况下的“正确”q-ary泛化。这种q-ary泛化不仅保留了其二进制版本的大多数结果,而且还展示了一些在二进制情况下没有观察到的特殊现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信