Prototype-based scatter learning for smoke segmentation

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lujian Yao, Haitao Zhao, Zhongze Wang, Kaijie Zhao, Jingchao Peng
{"title":"Prototype-based scatter learning for smoke segmentation","authors":"Lujian Yao,&nbsp;Haitao Zhao,&nbsp;Zhongze Wang,&nbsp;Kaijie Zhao,&nbsp;Jingchao Peng","doi":"10.1016/j.patcog.2025.112605","DOIUrl":null,"url":null,"abstract":"<div><div>Smoke segmentation enables precise localization of smoke for firefighting and gas leak detection. While current approaches focus on multi-scale feature aggregation, challenges remain in handling blurred edges and diverse smoke patterns. We propose <em>prototype scatter learning</em> (PSL), which improves smoke segmentation through unified optimization of feature extractors and prototypes. PSL introduces two key innovations: bottomK eigenvalues scatter (BES) loss for enhanced discrimination, and prototype uncorrelated optimization (PUO) for maintaining prototype diversity. Experimental results show that PSL achieves state-of-the-art performance on mainstream smoke segmentation datasets (SmokeSeg and SMOKE5K). The code can be found at <span><span>https://github.com/LujianYao/psl</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112605"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325012683","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Smoke segmentation enables precise localization of smoke for firefighting and gas leak detection. While current approaches focus on multi-scale feature aggregation, challenges remain in handling blurred edges and diverse smoke patterns. We propose prototype scatter learning (PSL), which improves smoke segmentation through unified optimization of feature extractors and prototypes. PSL introduces two key innovations: bottomK eigenvalues scatter (BES) loss for enhanced discrimination, and prototype uncorrelated optimization (PUO) for maintaining prototype diversity. Experimental results show that PSL achieves state-of-the-art performance on mainstream smoke segmentation datasets (SmokeSeg and SMOKE5K). The code can be found at https://github.com/LujianYao/psl.
基于原型的烟雾分割散射学习
烟雾分割可以精确定位烟雾用于消防和气体泄漏检测。虽然目前的方法主要集中在多尺度特征聚合上,但在处理模糊的边缘和不同的烟雾模式方面仍然存在挑战。我们提出了原型分散学习(PSL),它通过统一优化特征提取器和原型来改进烟雾分割。PSL引入了两个关键创新:用于增强识别的底部特征值散射(BES)损失和用于保持原型多样性的原型不相关优化(PUO)。实验结果表明,PSL在主流烟雾分割数据集(SmokeSeg和SMOKE5K)上达到了最先进的性能。代码可以在https://github.com/LujianYao/psl上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信