Joint distribution alignment on Lie group manifolds for domain adaptation

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Da Liu , Li Liu , Fanzhang Li , Jiangzhen He
{"title":"Joint distribution alignment on Lie group manifolds for domain adaptation","authors":"Da Liu ,&nbsp;Li Liu ,&nbsp;Fanzhang Li ,&nbsp;Jiangzhen He","doi":"10.1016/j.patcog.2025.112625","DOIUrl":null,"url":null,"abstract":"<div><div>Domain adaptation (DA) aims to learn a discriminative domain-invariant classifier by aligning the disparity between the source and target domains. Existing DA methods usually face one or several of the following problems: (1) using unreliable pseudo-labels of the target data directly learnt in the source domain; (2) aligning global distributions while neglecting local geometric structures of data; and (3) providing suboptimal local distribution alignments. Targeting these problems, this paper proposes a DA method called joint distribution alignment on Lie group manifold (JDALG). JDALG first extracts transformation-invariant Lie group features which embed intrinsic geometric structures of data. It then iteratively learns soft class labels for target data and aligns marginal and conditional distributions in a shared manifold subspace, minimizing global disparities while preserving local source domain consistency. This process culminates in a robust domain-invariant classifier. Extensive experiments on 6 DA datasets demonstrated that JDALG ranks the highest in 28 out of 54 transfer tasks, achieves average accuracy improvements of 7.6 %, 4.6 %, 0.7 %, 0.8 %, and 1.8 % over the best comparing methods on 5 datasets, and ranks the second on 1 dataset. The experiment results and comprehensive evaluations validate the effectiveness of JDALG compared to state-of-the-art DA methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112625"},"PeriodicalIF":7.6000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325012889","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Domain adaptation (DA) aims to learn a discriminative domain-invariant classifier by aligning the disparity between the source and target domains. Existing DA methods usually face one or several of the following problems: (1) using unreliable pseudo-labels of the target data directly learnt in the source domain; (2) aligning global distributions while neglecting local geometric structures of data; and (3) providing suboptimal local distribution alignments. Targeting these problems, this paper proposes a DA method called joint distribution alignment on Lie group manifold (JDALG). JDALG first extracts transformation-invariant Lie group features which embed intrinsic geometric structures of data. It then iteratively learns soft class labels for target data and aligns marginal and conditional distributions in a shared manifold subspace, minimizing global disparities while preserving local source domain consistency. This process culminates in a robust domain-invariant classifier. Extensive experiments on 6 DA datasets demonstrated that JDALG ranks the highest in 28 out of 54 transfer tasks, achieves average accuracy improvements of 7.6 %, 4.6 %, 0.7 %, 0.8 %, and 1.8 % over the best comparing methods on 5 datasets, and ranks the second on 1 dataset. The experiment results and comprehensive evaluations validate the effectiveness of JDALG compared to state-of-the-art DA methods.
面向领域自适应的李群流形联合分布对准
领域自适应(Domain adaptive, DA)是通过对源域和目标域之间的差异进行比对来学习一种判别性的领域不变分类器。现有的数据分析方法通常面临以下一个或几个问题:(1)使用源域直接学习到的目标数据的不可靠伪标签;(2)忽略局部几何结构,对准全局分布;(3)提供次优的局部分布路线。针对这些问题,本文提出了一种李群流形上的联合分布对齐(JDALG)数据分析方法。JDALG首先提取嵌入数据内在几何结构的变换不变李群特征。然后迭代地学习目标数据的软类标签,并在共享流形子空间中对齐边缘和条件分布,在保持局部源域一致性的同时最小化全局差异。这个过程最终形成一个健壮的域不变分类器。在6个数据集上的大量实验表明,JDALG在54个传输任务中的28个中排名最高,在5个数据集上的平均准确率比最佳比较方法提高了7.6%、4.6%、0.7%、0.8%和1.8%,在1个数据集上排名第二。实验结果和综合评价验证了JDALG与现有数据分析方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信