Ahmed Alqurashi , Sayeeda Khanam , Esam Y.O. Zafar , Ahmed J.A. Al-Gburi
{"title":"A symmetric dual-ring cross stub based dual-band THz metamaterial absorber design for permittivity sensing applications","authors":"Ahmed Alqurashi , Sayeeda Khanam , Esam Y.O. Zafar , Ahmed J.A. Al-Gburi","doi":"10.1016/j.rio.2025.100917","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel dual-band terahertz (THz) metamaterial absorber based on a symmetric dual-ring cross-stub (SDR-CS) resonator, designed for high-sensitivity permittivity sensing. The absorber, composed of aluminum resonators and a polyamide substrate, features a compact unit cell of 80 × 80 μm with rotational symmetry. It exhibits two strong absorption peaks at 1.26 THz and 2.29 THz with near-unity absorption. Detailed electromagnetic simulations reveal the physical mechanisms underpinning the dual-band response and confirm polarization insensitivity and angular stability up to 60° incidence under TE and TM polarizations. Crucially, the device demonstrates excellent sensing performance for refractive indices in the range 1.0–3.162, achieving sensitivities of 0.148 THz/RIU (148 GHz/RIU) and 0.28 THz/RIU (280 GHz/RIU) at the lower and higher resonance frequencies, respectively. The quality factors (Q) are 32.3 and 39.3, resulting in figure-of-merits (FOM) of 39.3 and 32.3 RIU–1, outperforming many reported metamaterial sensors with larger sizes or more complex materials. These attributes underscore the absorber’s potential as a compact, efficient, and highly sensitive platform for THz permittivity sensing with applications in biomedical diagnostics, chemical identification, and environmental monitoring.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"21 ","pages":"Article 100917"},"PeriodicalIF":3.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125001452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel dual-band terahertz (THz) metamaterial absorber based on a symmetric dual-ring cross-stub (SDR-CS) resonator, designed for high-sensitivity permittivity sensing. The absorber, composed of aluminum resonators and a polyamide substrate, features a compact unit cell of 80 × 80 μm with rotational symmetry. It exhibits two strong absorption peaks at 1.26 THz and 2.29 THz with near-unity absorption. Detailed electromagnetic simulations reveal the physical mechanisms underpinning the dual-band response and confirm polarization insensitivity and angular stability up to 60° incidence under TE and TM polarizations. Crucially, the device demonstrates excellent sensing performance for refractive indices in the range 1.0–3.162, achieving sensitivities of 0.148 THz/RIU (148 GHz/RIU) and 0.28 THz/RIU (280 GHz/RIU) at the lower and higher resonance frequencies, respectively. The quality factors (Q) are 32.3 and 39.3, resulting in figure-of-merits (FOM) of 39.3 and 32.3 RIU–1, outperforming many reported metamaterial sensors with larger sizes or more complex materials. These attributes underscore the absorber’s potential as a compact, efficient, and highly sensitive platform for THz permittivity sensing with applications in biomedical diagnostics, chemical identification, and environmental monitoring.