Photolithographically fabricated FR4-Based miniaturized implantable antenna with geometric tuning for biomedical telemetry in the MICS band

IF 3.1 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Min-Wen Wang , Wen-Quan Yan , Chun-Chieh Tseng , Jui-Han Lu , Ching-Chien Huang
{"title":"Photolithographically fabricated FR4-Based miniaturized implantable antenna with geometric tuning for biomedical telemetry in the MICS band","authors":"Min-Wen Wang ,&nbsp;Wen-Quan Yan ,&nbsp;Chun-Chieh Tseng ,&nbsp;Jui-Han Lu ,&nbsp;Ching-Chien Huang","doi":"10.1016/j.cap.2025.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the design, fabrication, and validation of a miniaturized circular monopole antenna for implantable biomedical telemetry in the MICS band. The antenna is built on a single-layer FR4 substrate and encapsulated with a PDMS biocompatible coating, enabling low-cost and scalable fabrication using standard photolithography. Key parameters such as conductor spacing, trace width, shorting element placement, and ground plane geometry were optimized to achieve compact size and stable impedance. Full-wave simulations predicted resonance at 406 MHz with a return loss of −34.23 dB, radiation efficiency of −29.59 dB, and gain of −27.91 dBi. Measurements in tissue-mimicking phantoms and porcine skin confirmed a return loss of −24.82 dB and gain of −27.94 dBi, closely matching simulations. Specific absorption rate analysis verified compliance with IEEE C95.1–1999 safety limits at 193 mW input. The proposed design integrates material choice, geometric refinement, and planar fabrication, providing a reproducible platform for next-generation implantable systems.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 367-375"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925002147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports the design, fabrication, and validation of a miniaturized circular monopole antenna for implantable biomedical telemetry in the MICS band. The antenna is built on a single-layer FR4 substrate and encapsulated with a PDMS biocompatible coating, enabling low-cost and scalable fabrication using standard photolithography. Key parameters such as conductor spacing, trace width, shorting element placement, and ground plane geometry were optimized to achieve compact size and stable impedance. Full-wave simulations predicted resonance at 406 MHz with a return loss of −34.23 dB, radiation efficiency of −29.59 dB, and gain of −27.91 dBi. Measurements in tissue-mimicking phantoms and porcine skin confirmed a return loss of −24.82 dB and gain of −27.94 dBi, closely matching simulations. Specific absorption rate analysis verified compliance with IEEE C95.1–1999 safety limits at 193 mW input. The proposed design integrates material choice, geometric refinement, and planar fabrication, providing a reproducible platform for next-generation implantable systems.

Abstract Image

光刻制备基于fr4的微型化几何调谐植入式天线,用于MICS波段的生物医学遥测
本研究报告了用于MICS波段植入式生物医学遥测的小型化圆形单极天线的设计、制造和验证。该天线建立在单层FR4基板上,并用PDMS生物相容性涂层封装,使用标准光刻技术实现低成本和可扩展的制造。关键参数,如导体间距,走线宽度,短路元件的位置和接地面几何结构进行了优化,以实现紧凑的尺寸和稳定的阻抗。全波仿真预测406 MHz谐振,回波损耗为−34.23 dB,辐射效率为−29.59 dB,增益为−27.91 dBi。在模拟组织模型和猪皮上的测量证实,回波损耗为- 24.82 dB,增益为- 27.94 dBi,与模拟结果非常吻合。特定吸收率分析验证符合IEEE C95.1-1999安全限制,输入为193 mW。提出的设计集成了材料选择、几何细化和平面制造,为下一代植入式系统提供了一个可复制的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信