Min-Wen Wang , Wen-Quan Yan , Chun-Chieh Tseng , Jui-Han Lu , Ching-Chien Huang
{"title":"Photolithographically fabricated FR4-Based miniaturized implantable antenna with geometric tuning for biomedical telemetry in the MICS band","authors":"Min-Wen Wang , Wen-Quan Yan , Chun-Chieh Tseng , Jui-Han Lu , Ching-Chien Huang","doi":"10.1016/j.cap.2025.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the design, fabrication, and validation of a miniaturized circular monopole antenna for implantable biomedical telemetry in the MICS band. The antenna is built on a single-layer FR4 substrate and encapsulated with a PDMS biocompatible coating, enabling low-cost and scalable fabrication using standard photolithography. Key parameters such as conductor spacing, trace width, shorting element placement, and ground plane geometry were optimized to achieve compact size and stable impedance. Full-wave simulations predicted resonance at 406 MHz with a return loss of −34.23 dB, radiation efficiency of −29.59 dB, and gain of −27.91 dBi. Measurements in tissue-mimicking phantoms and porcine skin confirmed a return loss of −24.82 dB and gain of −27.94 dBi, closely matching simulations. Specific absorption rate analysis verified compliance with IEEE C95.1–1999 safety limits at 193 mW input. The proposed design integrates material choice, geometric refinement, and planar fabrication, providing a reproducible platform for next-generation implantable systems.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 367-375"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925002147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work reports the design, fabrication, and validation of a miniaturized circular monopole antenna for implantable biomedical telemetry in the MICS band. The antenna is built on a single-layer FR4 substrate and encapsulated with a PDMS biocompatible coating, enabling low-cost and scalable fabrication using standard photolithography. Key parameters such as conductor spacing, trace width, shorting element placement, and ground plane geometry were optimized to achieve compact size and stable impedance. Full-wave simulations predicted resonance at 406 MHz with a return loss of −34.23 dB, radiation efficiency of −29.59 dB, and gain of −27.91 dBi. Measurements in tissue-mimicking phantoms and porcine skin confirmed a return loss of −24.82 dB and gain of −27.94 dBi, closely matching simulations. Specific absorption rate analysis verified compliance with IEEE C95.1–1999 safety limits at 193 mW input. The proposed design integrates material choice, geometric refinement, and planar fabrication, providing a reproducible platform for next-generation implantable systems.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.