Uncovering the Molecular Networks of Extracellular Vesicles in the Pathogenesis of Periodontitis

IF 3.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Wenjie Yu , Wuda Huoshen , Wenjie Zhong , Xiang Gao , Jinlin Song
{"title":"Uncovering the Molecular Networks of Extracellular Vesicles in the Pathogenesis of Periodontitis","authors":"Wenjie Yu ,&nbsp;Wuda Huoshen ,&nbsp;Wenjie Zhong ,&nbsp;Xiang Gao ,&nbsp;Jinlin Song","doi":"10.1016/j.identj.2025.103936","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>The aim of the study is to explore EV-related genes (ERGs) networks underlying periodontitis by integrating bulk RNA-seq, single-cell RNA-seq, and causal genetic analysis.</div></div><div><h3>Methods</h3><div>Using GEO and eQTLGen datasets, we identified periodontitis-associated ERGs through SMR and differential gene analysis. Potential therapeutics were predicted via drug repurposing and molecular docking, while machine learning built validated predictive models. Functional enrichment revealed pathogenic pathways, and scRNA-seq explored ERGs in tissue, peripheral blood, and diabetes-comorbid periodontitis cases</div></div><div><h3>Results</h3><div>SMR prioritised nine causal ERGs (<em>CD34, TLR4, TIMD4, ENPP4, HLA-DRA, HLA-B, ENDOD1, PSMA4</em> and <em>HSPB1</em>) that were mainly expressed in NK cells and CD8⁺ T cells in the subsequent single cell sequence and deconvolution analysis analysis. Dexamethasone emerged as the most promising drug via binding to <em>HSPB1</em>. The predictive models developed using machine learning achieved robust accuracy (XGBoost: AUC = 0.836) in validation. Key biological pathways included blood coagulation, hemostasis cell, and adhesion molecules, and so on.</div></div><div><h3>Conclusion</h3><div>Through multiple analyses integration, we defined an ERG network central to periodontitis pathogenesis. The diagnostic model and repurposed drugs offer translational avenues, requiring further experimental validation.</div></div><div><h3>Clinical Relevance</h3><div>This study identified and prioritised periodontitis-associated ERGs, elucidated their molecular mechanisms, and established a foundation for future functional validation and clinical risk assessment.</div></div>","PeriodicalId":13785,"journal":{"name":"International dental journal","volume":"75 6","pages":"Article 103936"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International dental journal","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020653925032198","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

The aim of the study is to explore EV-related genes (ERGs) networks underlying periodontitis by integrating bulk RNA-seq, single-cell RNA-seq, and causal genetic analysis.

Methods

Using GEO and eQTLGen datasets, we identified periodontitis-associated ERGs through SMR and differential gene analysis. Potential therapeutics were predicted via drug repurposing and molecular docking, while machine learning built validated predictive models. Functional enrichment revealed pathogenic pathways, and scRNA-seq explored ERGs in tissue, peripheral blood, and diabetes-comorbid periodontitis cases

Results

SMR prioritised nine causal ERGs (CD34, TLR4, TIMD4, ENPP4, HLA-DRA, HLA-B, ENDOD1, PSMA4 and HSPB1) that were mainly expressed in NK cells and CD8⁺ T cells in the subsequent single cell sequence and deconvolution analysis analysis. Dexamethasone emerged as the most promising drug via binding to HSPB1. The predictive models developed using machine learning achieved robust accuracy (XGBoost: AUC = 0.836) in validation. Key biological pathways included blood coagulation, hemostasis cell, and adhesion molecules, and so on.

Conclusion

Through multiple analyses integration, we defined an ERG network central to periodontitis pathogenesis. The diagnostic model and repurposed drugs offer translational avenues, requiring further experimental validation.

Clinical Relevance

This study identified and prioritised periodontitis-associated ERGs, elucidated their molecular mechanisms, and established a foundation for future functional validation and clinical risk assessment.
揭示牙周炎发病机制中细胞外囊泡的分子网络
目的:通过整合整体RNA-seq、单细胞RNA-seq和因果遗传分析,探索牙周炎的evs相关基因(ERGs)网络。方法使用GEO和eQTLGen数据集,通过SMR和差异基因分析鉴定牙周炎相关的ERGs。通过药物再利用和分子对接来预测潜在的治疗方法,而机器学习则建立了有效的预测模型。结果在随后的单细胞序列和反卷积分析中,smr优先筛选出主要表达于NK细胞和CD8 + T细胞的9种致病ERGs (CD34、TLR4、TIMD4、ENPP4、HLA-DRA、HLA-B、ENDOD1、PSMA4和HSPB1)。地塞米松通过与HSPB1结合而成为最有希望的药物。使用机器学习开发的预测模型在验证中获得了稳健的准确性(XGBoost: AUC = 0.836)。主要生物学途径包括凝血、止血细胞、粘附分子等。结论通过多种分析整合,我们确定了牙周炎发病机制的核心ERG网络。诊断模型和重新利用的药物提供了转化途径,需要进一步的实验验证。本研究确定了与牙周炎相关的ERGs并对其进行了排序,阐明了其分子机制,为未来的功能验证和临床风险评估奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International dental journal
International dental journal 医学-牙科与口腔外科
CiteScore
4.80
自引率
6.10%
发文量
159
审稿时长
63 days
期刊介绍: The International Dental Journal features peer-reviewed, scientific articles relevant to international oral health issues, as well as practical, informative articles aimed at clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信