Daokuan Liang,Tianle Xu,Wenyuan Zhang,Yuyao Wang,Yongbao Feng,Jian Gu,Peng Xu,Qiulong Li
{"title":"Controlled Synthesis of 3D Silver Fractal Flowers for High-Performance Conductive Adhesives.","authors":"Daokuan Liang,Tianle Xu,Wenyuan Zhang,Yuyao Wang,Yongbao Feng,Jian Gu,Peng Xu,Qiulong Li","doi":"10.1021/acsami.5c17605","DOIUrl":null,"url":null,"abstract":"Silver-based electrically conductive adhesives (ECAs) are widely used in the connection, conduction, and packaging of electronic components. However, commercial ECAs typically contain more than 90 wt % Ag fillers, creating an urgent demand for low-Ag-content alternatives that maintain excellent performance. To address this issue, Ag with 3D structures has significant low-content and structural advantages in efficiently constructing 3D conductive networks in the ECAs system. Herein, three types of Ag-based fractal flowers with 3D branched structures (Ag FW-I, Ag FW-II, and Ag FW-III) were successfully synthesized using a novel, facile, and efficient chemical reduction method. The Ag FW-II particles served as the primary conductive framework, while Ag FW-I and Ag FW-III acted as auxiliary fillers, bridging gaps and connecting isolated regions. When the Ag FW-I, Ag FW-II, and Ag FW-III contents were optimized to 17.5, 50, and 12.5 wt %, respectively, the resulting ternary ECAs can deliver the lowest bulk resistivity of 1.15 × 10-4 Ω·cm and a high adhesion strength of 12.88 MPa. These Ag FWs-based ECAs demonstrate the best balance of conductivity and adhesion strength, offering a promising solution for the electronic packaging industry.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"106 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c17605","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silver-based electrically conductive adhesives (ECAs) are widely used in the connection, conduction, and packaging of electronic components. However, commercial ECAs typically contain more than 90 wt % Ag fillers, creating an urgent demand for low-Ag-content alternatives that maintain excellent performance. To address this issue, Ag with 3D structures has significant low-content and structural advantages in efficiently constructing 3D conductive networks in the ECAs system. Herein, three types of Ag-based fractal flowers with 3D branched structures (Ag FW-I, Ag FW-II, and Ag FW-III) were successfully synthesized using a novel, facile, and efficient chemical reduction method. The Ag FW-II particles served as the primary conductive framework, while Ag FW-I and Ag FW-III acted as auxiliary fillers, bridging gaps and connecting isolated regions. When the Ag FW-I, Ag FW-II, and Ag FW-III contents were optimized to 17.5, 50, and 12.5 wt %, respectively, the resulting ternary ECAs can deliver the lowest bulk resistivity of 1.15 × 10-4 Ω·cm and a high adhesion strength of 12.88 MPa. These Ag FWs-based ECAs demonstrate the best balance of conductivity and adhesion strength, offering a promising solution for the electronic packaging industry.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.