{"title":"LorBin: efficient binning of long-read metagenomes by multiscale adaptive clustering and evaluation.","authors":"Wei Xue,Zuo Liu,Yaozhong Zhang,Waseem Raza,Yarong Li,Li Jiang,Ye Tao,Jun Qian,Jousset Alexandre,Fang-Jie Zhao,Yangchun Xu,Fritz Sedlazeck,Qirong Shen,Gaofei Jiang,Zhong Wei","doi":"10.1038/s41467-025-64916-8","DOIUrl":null,"url":null,"abstract":"Long-read sequencing has transformed metagenomics and improved the quality of metagenome-assembled genomes (MAGs). However, current binning methods struggle with identifying unknown species and managing imbalanced species distributions. Here, we present LorBin, an unsupervised binner specially designed to reconstruct MAGs in natural microbiomes. LorBin deploys a two-stage multiscale adaptive DBSCAN and BIRCH clustering with evaluation decision models using single-copy genes to maximize MAG recovery. LorBin outperforms six competing binners in both simulated and real microbiomes, including oral, gut, and marine samples. LorBin generated 15-189% more high-quality MAGs with high serendipity and identified 2.4-17 times more novel taxa than state-of-the-art binning methods. Together, LorBin is a promising long-read metagenomic binner for accessing species-rich samples containing unknown taxa and is efficient at retrieving more complete genomes from imbalanced natural microbiomes.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":"9353"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64916-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-read sequencing has transformed metagenomics and improved the quality of metagenome-assembled genomes (MAGs). However, current binning methods struggle with identifying unknown species and managing imbalanced species distributions. Here, we present LorBin, an unsupervised binner specially designed to reconstruct MAGs in natural microbiomes. LorBin deploys a two-stage multiscale adaptive DBSCAN and BIRCH clustering with evaluation decision models using single-copy genes to maximize MAG recovery. LorBin outperforms six competing binners in both simulated and real microbiomes, including oral, gut, and marine samples. LorBin generated 15-189% more high-quality MAGs with high serendipity and identified 2.4-17 times more novel taxa than state-of-the-art binning methods. Together, LorBin is a promising long-read metagenomic binner for accessing species-rich samples containing unknown taxa and is efficient at retrieving more complete genomes from imbalanced natural microbiomes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.