LorBin: efficient binning of long-read metagenomes by multiscale adaptive clustering and evaluation.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wei Xue,Zuo Liu,Yaozhong Zhang,Waseem Raza,Yarong Li,Li Jiang,Ye Tao,Jun Qian,Jousset Alexandre,Fang-Jie Zhao,Yangchun Xu,Fritz Sedlazeck,Qirong Shen,Gaofei Jiang,Zhong Wei
{"title":"LorBin: efficient binning of long-read metagenomes by multiscale adaptive clustering and evaluation.","authors":"Wei Xue,Zuo Liu,Yaozhong Zhang,Waseem Raza,Yarong Li,Li Jiang,Ye Tao,Jun Qian,Jousset Alexandre,Fang-Jie Zhao,Yangchun Xu,Fritz Sedlazeck,Qirong Shen,Gaofei Jiang,Zhong Wei","doi":"10.1038/s41467-025-64916-8","DOIUrl":null,"url":null,"abstract":"Long-read sequencing has transformed metagenomics and improved the quality of metagenome-assembled genomes (MAGs). However, current binning methods struggle with identifying unknown species and managing imbalanced species distributions. Here, we present LorBin, an unsupervised binner specially designed to reconstruct MAGs in natural microbiomes. LorBin deploys a two-stage multiscale adaptive DBSCAN and BIRCH clustering with evaluation decision models using single-copy genes to maximize MAG recovery. LorBin outperforms six competing binners in both simulated and real microbiomes, including oral, gut, and marine samples. LorBin generated 15-189% more high-quality MAGs with high serendipity and identified 2.4-17 times more novel taxa than state-of-the-art binning methods. Together, LorBin is a promising long-read metagenomic binner for accessing species-rich samples containing unknown taxa and is efficient at retrieving more complete genomes from imbalanced natural microbiomes.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"49 1","pages":"9353"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64916-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Long-read sequencing has transformed metagenomics and improved the quality of metagenome-assembled genomes (MAGs). However, current binning methods struggle with identifying unknown species and managing imbalanced species distributions. Here, we present LorBin, an unsupervised binner specially designed to reconstruct MAGs in natural microbiomes. LorBin deploys a two-stage multiscale adaptive DBSCAN and BIRCH clustering with evaluation decision models using single-copy genes to maximize MAG recovery. LorBin outperforms six competing binners in both simulated and real microbiomes, including oral, gut, and marine samples. LorBin generated 15-189% more high-quality MAGs with high serendipity and identified 2.4-17 times more novel taxa than state-of-the-art binning methods. Together, LorBin is a promising long-read metagenomic binner for accessing species-rich samples containing unknown taxa and is efficient at retrieving more complete genomes from imbalanced natural microbiomes.
LorBin:基于多尺度自适应聚类和评估的长读宏基因组的高效分组。
长读测序改变了宏基因组学,提高了宏基因组组装基因组(MAGs)的质量。然而,目前的分类方法难以识别未知物种和管理不平衡的物种分布。在这里,我们介绍了LorBin,一个专门设计用于重建天然微生物组中的mag的无监督垃圾箱。LorBin部署了一个两阶段的多尺度自适应DBSCAN和BIRCH聚类,并使用单拷贝基因评估决策模型来最大化MAG恢复。LorBin在模拟和真实微生物组(包括口腔、肠道和海洋样本)中都优于六种竞争对手。与最先进的分类方法相比,LorBin生成的高质量mag高15-189%,识别出的新分类群是现有方法的2.4-17倍。总之,LorBin是一个很有前途的长读宏基因组箱,用于获取含有未知分类群的物种丰富的样品,并有效地从不平衡的自然微生物组中检索更完整的基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信