Covalent Organic Framework Membranes with Asymmetric Wettability for Efficient Photocatalytic H2O2 Synthesis.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chi Qiao,Weipeng Xian,Zhuozhi Lai,Zhirou Huang,Qing Guo,Sai Wang,Zhifeng Dai,Yubing Xiong,Xiangju Meng,Shengqian Ma,Qi Sun
{"title":"Covalent Organic Framework Membranes with Asymmetric Wettability for Efficient Photocatalytic H2O2 Synthesis.","authors":"Chi Qiao,Weipeng Xian,Zhuozhi Lai,Zhirou Huang,Qing Guo,Sai Wang,Zhifeng Dai,Yubing Xiong,Xiangju Meng,Shengqian Ma,Qi Sun","doi":"10.1002/anie.202519513","DOIUrl":null,"url":null,"abstract":"Photocatalytic H2O2 synthesis from air and water is a sustainable route but hindered by mass transport and charge separation issues. Here, covalent organic framework (COF) membranes with asymmetric wettability are developed to construct triphase interfaces, locally enriching O2 and H2O for efficient reactions. Converting COF powders into nanostructured membranes enhances light absorption and band alignment, promoting water oxidation and charge separation. These synergistic effects boost H2O2 production to 52.5 mmol g-1 h-1 under O2, with an apparent quantum yield 27.8 times higher than powders, and up to 148.9-fold under air. The flexible membranes can be integrated into reactors, and the in situ generated H2O2 enables pollutant degradation. This work demonstrates a versatile strategy for high-performance triphase photocatalysis and multifunctional membrane catalysts toward sustainable chemical synthesis.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":"e202519513"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202519513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic H2O2 synthesis from air and water is a sustainable route but hindered by mass transport and charge separation issues. Here, covalent organic framework (COF) membranes with asymmetric wettability are developed to construct triphase interfaces, locally enriching O2 and H2O for efficient reactions. Converting COF powders into nanostructured membranes enhances light absorption and band alignment, promoting water oxidation and charge separation. These synergistic effects boost H2O2 production to 52.5 mmol g-1 h-1 under O2, with an apparent quantum yield 27.8 times higher than powders, and up to 148.9-fold under air. The flexible membranes can be integrated into reactors, and the in situ generated H2O2 enables pollutant degradation. This work demonstrates a versatile strategy for high-performance triphase photocatalysis and multifunctional membrane catalysts toward sustainable chemical synthesis.
具有不对称润湿性的共价有机框架膜用于光催化合成H2O2。
光催化从空气和水中合成H2O2是一种可持续的途径,但受到质量传输和电荷分离问题的阻碍。在这里,开发了具有不对称润湿性的共价有机框架(COF)膜来构建三相界面,局部富集O2和H2O以进行高效反应。将COF粉末转化为纳米结构膜可以增强光吸收和能带排列,促进水氧化和电荷分离。这些协同效应使H2O2在O2条件下的产率达到52.5 mmol g-1 h-1,表观量子产率是粉末条件下的27.8倍,在空气条件下达到148.9倍。柔性膜可以集成到反应器中,并且原位生成的H2O2可以降解污染物。这项工作展示了高性能三相光催化和多功能膜催化剂在可持续化学合成方面的通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信