Chan Ho Moon,Hee Gyeong Ko,Hyun Lee,Seojoon Bang,Hyeong Seok Kang,Ju Yeong Gwon,Jong Hwa Seo,Nayoung Lee,So Won Jeon,Yun-A Kim,Jong Sang Yoon,Kyung-Yup Cha,Min-Ho Kang,Dong Yun Lee,Soo-Hong Lee,Gi Doo Cha,Kisuk Yang,Donghyun Lim,Heemin Kang,Su Ryon Shin,Han Young Kim,Hyun-Do Jung
{"title":"Mesenchymal Stem Cell-Inspired Microneedle Platform for NIR-responsive Immunomodulation and Accelerated Chronic Wound Healing.","authors":"Chan Ho Moon,Hee Gyeong Ko,Hyun Lee,Seojoon Bang,Hyeong Seok Kang,Ju Yeong Gwon,Jong Hwa Seo,Nayoung Lee,So Won Jeon,Yun-A Kim,Jong Sang Yoon,Kyung-Yup Cha,Min-Ho Kang,Dong Yun Lee,Soo-Hong Lee,Gi Doo Cha,Kisuk Yang,Donghyun Lim,Heemin Kang,Su Ryon Shin,Han Young Kim,Hyun-Do Jung","doi":"10.1002/adma.202514081","DOIUrl":null,"url":null,"abstract":"Chronic diabetic wounds present substantial clinical challenges owing to sustained inflammation, compromised vascularization, and inadequate retention of therapeutic medications. Accordingly, motivated by mesenchymal stem cells (MSCs) that actively secrete bioactive exosomes in response to stimuli from the tissue microenvironment, a biomimetic microneedle (MN) platform (MSCi@MN) is created to address these challenges. The MSCi@MN exhibits a dual-compartment structure composed of MSC-derived extracellular nanovesicles (NV) conjugated with polydeoxyribonucleotide (PDRN; DNA), referred to as NV-DNA, encapsulated within dissolvable MN tips, and photothermal-responsive MXene nanoparticles (MX) incorporated into the base layer for targeted near-infrared (NIR)-activated drug delivery. Upon NIR irradiation, MSCi@MN quickly releases NV-DNA, effectively modifying the immune responses by facilitating anti-inflammatory M2 macrophage polarization and activating tolerogenic dendritic cells, thereby establishing a regenerative microenvironment. Transcriptomic research has verified that NV-DNA synergistically promotes angiogenesis, cellular proliferation, and extracellular matrix remodeling by activating complementary molecular pathways. In animal models of diabetes, MSCi@MNs markedly expedite wound repair, diminish inflammation, enhance angiogenesis, and restore skin appendages without systemic adverse effects. This MSC-inspired approach, which integrates biologically sensitive controlled release with robust immunoregenerative capabilities, has substantial potential for clinical use in chronic wound treatment and regenerative medicine.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":"e14081"},"PeriodicalIF":26.8000,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202514081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic diabetic wounds present substantial clinical challenges owing to sustained inflammation, compromised vascularization, and inadequate retention of therapeutic medications. Accordingly, motivated by mesenchymal stem cells (MSCs) that actively secrete bioactive exosomes in response to stimuli from the tissue microenvironment, a biomimetic microneedle (MN) platform (MSCi@MN) is created to address these challenges. The MSCi@MN exhibits a dual-compartment structure composed of MSC-derived extracellular nanovesicles (NV) conjugated with polydeoxyribonucleotide (PDRN; DNA), referred to as NV-DNA, encapsulated within dissolvable MN tips, and photothermal-responsive MXene nanoparticles (MX) incorporated into the base layer for targeted near-infrared (NIR)-activated drug delivery. Upon NIR irradiation, MSCi@MN quickly releases NV-DNA, effectively modifying the immune responses by facilitating anti-inflammatory M2 macrophage polarization and activating tolerogenic dendritic cells, thereby establishing a regenerative microenvironment. Transcriptomic research has verified that NV-DNA synergistically promotes angiogenesis, cellular proliferation, and extracellular matrix remodeling by activating complementary molecular pathways. In animal models of diabetes, MSCi@MNs markedly expedite wound repair, diminish inflammation, enhance angiogenesis, and restore skin appendages without systemic adverse effects. This MSC-inspired approach, which integrates biologically sensitive controlled release with robust immunoregenerative capabilities, has substantial potential for clinical use in chronic wound treatment and regenerative medicine.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.