Directing the Electrochemical C─N Coupling Toward Efficient Amide Synthesis via Ammonia Activation-Mediated Pathway.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenzhong Liu,Guangtao Ma,Jiawei Li,Junchi Xu,Li Xiong,Yuan Zhong,Hengjie Liu,Lejuan Cai,Ning Zhang,Yujie Xiong
{"title":"Directing the Electrochemical C─N Coupling Toward Efficient Amide Synthesis via Ammonia Activation-Mediated Pathway.","authors":"Zhenzhong Liu,Guangtao Ma,Jiawei Li,Junchi Xu,Li Xiong,Yuan Zhong,Hengjie Liu,Lejuan Cai,Ning Zhang,Yujie Xiong","doi":"10.1002/anie.202518108","DOIUrl":null,"url":null,"abstract":"Electrochemically oxidative C─N coupling using alcohol and ammonia as feedstocks offers a sustainable alternative for the chemosynthesis of amide organonitrogens. The achievements of high activity and selectivity yet remains challenging via the conventional alcohol oxidation pathway. Here, we present an alternative ammonia-activation mediated pathway to favor the electrochemical C─N coupling necessary. Spectroscopic and theoretical investigations untangle that this manipulated process begins with the oxidation of ammonia to endow active *NH2 species, which then efficiently couple with alcohol species to form C─N bonds. This alternative C─N coupling pathway exhibits accelerated kinetics and, more importantly, bypasses the formation of aldehyde intermediate, thereby preventing unfavorable overoxidation. As a result, this pathway achieves a high Faradaic efficiency of 50.1% and a carbon selectivity of 87.6% for efficient formamide electrosynthesis over a NiCuRu-based (oxy)hydroxide catalyst, with a productivity of 557.2 µmol cm-2 h-1. Such electrosynthetic approach further exhibit the universality of waste biomass/plastics-driven carbon feedstocks, achieving considerable Faradaic efficiencies of 32%-60%. Techno-economic analysis confirms the potential profitability of using renewable electricity input, highlighting the significant advantages of green chemical manufacturing for sustainable development.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"150 1","pages":"e202518108"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemically oxidative C─N coupling using alcohol and ammonia as feedstocks offers a sustainable alternative for the chemosynthesis of amide organonitrogens. The achievements of high activity and selectivity yet remains challenging via the conventional alcohol oxidation pathway. Here, we present an alternative ammonia-activation mediated pathway to favor the electrochemical C─N coupling necessary. Spectroscopic and theoretical investigations untangle that this manipulated process begins with the oxidation of ammonia to endow active *NH2 species, which then efficiently couple with alcohol species to form C─N bonds. This alternative C─N coupling pathway exhibits accelerated kinetics and, more importantly, bypasses the formation of aldehyde intermediate, thereby preventing unfavorable overoxidation. As a result, this pathway achieves a high Faradaic efficiency of 50.1% and a carbon selectivity of 87.6% for efficient formamide electrosynthesis over a NiCuRu-based (oxy)hydroxide catalyst, with a productivity of 557.2 µmol cm-2 h-1. Such electrosynthetic approach further exhibit the universality of waste biomass/plastics-driven carbon feedstocks, achieving considerable Faradaic efficiencies of 32%-60%. Techno-economic analysis confirms the potential profitability of using renewable electricity input, highlighting the significant advantages of green chemical manufacturing for sustainable development.
通过氨活化介导途径引导电化学C─N偶联高效合成酰胺。
以乙醇和氨为原料的电化学氧化C─N偶联为酰胺类有机氮的化学合成提供了一种可持续的选择。通过传统的醇氧化途径取得高活性和选择性的成果仍然具有挑战性。在这里,我们提出了另一种氨活化介导的途径,有利于电化学C─N耦合。光谱和理论研究表明,这一被操纵的过程始于氨的氧化,赋予活性*NH2,然后有效地与醇类偶联形成C─N键。这种替代的C─N偶联途径表现出加速的动力学,更重要的是,绕过醛中间体的形成,从而防止不利的过氧化。结果表明,该途径在nicuru基(氧)氢氧化物催化剂上实现了50.1%的法拉第效率和87.6%的碳选择性,电合成甲酰胺的效率为557.2µmol cm-2 h-1。这种电合成方法进一步展示了废生物质/塑料驱动碳原料的普遍性,实现了32%-60%的可观法拉第效率。技术经济分析证实了使用可再生电力投入的潜在盈利能力,突出了绿色化学制造对可持续发展的重大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信