PHLOWER leverages single-cell multimodal data to infer complex, multi-branching cell differentiation trajectories.

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Mingbo Cheng, Jitske Jansen, Katharina C Reimer, Vincent P Grande, James S Nagai, Zhijian Li, Paul Kießling, Martin Grasshoff, Christoph Kuppe, Michael T Schaub, Rafael Kramann, Ivan G Costa
{"title":"PHLOWER leverages single-cell multimodal data to infer complex, multi-branching cell differentiation trajectories.","authors":"Mingbo Cheng, Jitske Jansen, Katharina C Reimer, Vincent P Grande, James S Nagai, Zhijian Li, Paul Kießling, Martin Grasshoff, Christoph Kuppe, Michael T Schaub, Rafael Kramann, Ivan G Costa","doi":"10.1038/s41592-025-02870-5","DOIUrl":null,"url":null,"abstract":"<p><p>Computational trajectory analysis is a key computational task for inferring differentiation trees from this single-cell data. An open challenge is the prediction of complex and multi-branching trees from multimodal data. To address these challenges, we present PHLOWER (decomposition of the Hodge Laplacian for inferring trajectories from flows of cell differentiation), which leverages the harmonic component of the Hodge decomposition on simplicial complexes to infer trajectory embeddings from single-cell multimodal data. These natural representations of cell differentiation facilitate the estimation of their underlying differentiation trees. We evaluate PHLOWER through benchmarking with multi-branching differentiation trees and using kidney organoid multimodal and spatial single-cell data. These demonstrate the power of PHLOWER in both the inference of complex trees and the identification of transcription factors regulating off-target cells in kidney organoids. Thus, PHLOWER enables inference of complex branching trajectories and prediction of transcriptional regulators by leveraging multimodal data.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02870-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Computational trajectory analysis is a key computational task for inferring differentiation trees from this single-cell data. An open challenge is the prediction of complex and multi-branching trees from multimodal data. To address these challenges, we present PHLOWER (decomposition of the Hodge Laplacian for inferring trajectories from flows of cell differentiation), which leverages the harmonic component of the Hodge decomposition on simplicial complexes to infer trajectory embeddings from single-cell multimodal data. These natural representations of cell differentiation facilitate the estimation of their underlying differentiation trees. We evaluate PHLOWER through benchmarking with multi-branching differentiation trees and using kidney organoid multimodal and spatial single-cell data. These demonstrate the power of PHLOWER in both the inference of complex trees and the identification of transcription factors regulating off-target cells in kidney organoids. Thus, PHLOWER enables inference of complex branching trajectories and prediction of transcriptional regulators by leveraging multimodal data.

PHLOWER利用单细胞多模态数据来推断复杂的、多分支的细胞分化轨迹。
计算轨迹分析是从单细胞数据推断分化树的关键计算任务。一个开放的挑战是从多模态数据中预测复杂和多分支树。为了应对这些挑战,我们提出了PHLOWER(用于从细胞分化流推断轨迹的霍奇拉普拉斯分解),它利用简单复合体上霍奇分解的谐波分量来从单细胞多模态数据推断轨迹嵌入。这些细胞分化的自然表征有助于估计其潜在的分化树。我们通过使用多分支分化树和肾类器官多模态和空间单细胞数据进行基准测试来评估PHLOWER。这证明了PHLOWER在复杂树的推断和识别肾类器官中调节脱靶细胞的转录因子方面的能力。因此,PHLOWER可以通过利用多模态数据来推断复杂的分支轨迹和预测转录调控因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信