{"title":"Endocrine examples of phase separation in biology.","authors":"Talia Fargason, Xu Liu","doi":"10.1210/endocr/bqaf158","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 15 years, groundbreaking discoveries have reshaped our understanding of how biomolecules are organized in space and time within cells, revealing that many cellular compartments are separated from their surroundings not by membranes, but by physical forces arising from unique interactions among their biomolecular components. These interactions drive the compartmentalization of biomolecules through liquid-liquid phase separation (LLPS) into dynamic droplets, which can further stabilize through liquid-gel phase separation (LGPS). Phase separation plays essential roles across diverse biological systems, including the endocrine system, where it impacts the function on steroid hormone receptors (SHRs). SHRs are a family of nuclear receptors that transduce steroid signals to regulate transcription of thousands of genes, thereby supporting endocrine homeostasis and contributing to diseases when dysregulated. During gene activation, SHRs form high-density clusters at promoters and enhancers. This minireview summarizes recent literature indicating that these clusters function as transcriptional condensates, where phase separation of SHRs and coregulators mediates chromatin remodeling and enhanced transcription. We also discuss hypotheses suggesting that SHR-driven LLPS at gene loci contributes to hormone therapy resistance, while a transition to LGPS causes reduced hormone responsiveness. Finally, advancements in SHR condensate-modifying drugs to create new therapeutic options for hormone therapy-resistant cancers are highlighted. Overall, emerging evidence on the phase properties of SHR condensates is transforming our understanding of the endocrine regulation and unleashing novel intervention strategies beyond targeting individual proteins.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf158","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past 15 years, groundbreaking discoveries have reshaped our understanding of how biomolecules are organized in space and time within cells, revealing that many cellular compartments are separated from their surroundings not by membranes, but by physical forces arising from unique interactions among their biomolecular components. These interactions drive the compartmentalization of biomolecules through liquid-liquid phase separation (LLPS) into dynamic droplets, which can further stabilize through liquid-gel phase separation (LGPS). Phase separation plays essential roles across diverse biological systems, including the endocrine system, where it impacts the function on steroid hormone receptors (SHRs). SHRs are a family of nuclear receptors that transduce steroid signals to regulate transcription of thousands of genes, thereby supporting endocrine homeostasis and contributing to diseases when dysregulated. During gene activation, SHRs form high-density clusters at promoters and enhancers. This minireview summarizes recent literature indicating that these clusters function as transcriptional condensates, where phase separation of SHRs and coregulators mediates chromatin remodeling and enhanced transcription. We also discuss hypotheses suggesting that SHR-driven LLPS at gene loci contributes to hormone therapy resistance, while a transition to LGPS causes reduced hormone responsiveness. Finally, advancements in SHR condensate-modifying drugs to create new therapeutic options for hormone therapy-resistant cancers are highlighted. Overall, emerging evidence on the phase properties of SHR condensates is transforming our understanding of the endocrine regulation and unleashing novel intervention strategies beyond targeting individual proteins.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.